已知曲線C的極坐標方程為ρ=6sinθ,以極點為原點、極軸為x軸非負半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C截得的線段的長度.
4
將曲線C的極坐標方程化為直角坐標方程x2+y2-6y=0,即x2+(y-3)2=9,它表示以(0,3)為圓心、以3為半徑的圓,直線l的普通方程為y=x+1,圓C的圓心到直線l的距離d=1,故直線l被曲線C截得的線段長度為2=4.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,兩種坐標系取相同單位長度.已知曲線過點的直線的參數(shù)方程為(t為參數(shù)). (1)求曲線C與直線 的普通方程;(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,若直線 與曲線相切,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線與C的交點為,以坐標原點為極點,x軸正半軸為極坐標建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系xOy中,直線l的方程為x-y+2=0,
曲線C的參數(shù)方程為 (α為參數(shù)).
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,曲線C的參數(shù)方程為為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標系,點,直線的極坐標方程為.
(1)判斷點與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線與曲線C的兩個交點為A、B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線C1的極坐標方程為曲線C2的參數(shù)方程為為參數(shù)),以極點為原點,極軸為軸正半軸建立平面直角坐標系,則曲線C1上的點與曲線C2上的點最近的距離為
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在極坐標系中,已知曲線C1:ρ=12sinθ,曲線C2:ρ=12cos.
(1)求曲線C1和C2的直角坐標方程;
(2)若P、Q分別是曲線C1和C2上的動點,求PQ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在極坐標系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個交點在極軸上,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C:ρsin(θ+)=,曲線P:ρ2-4ρcosθ+3=0,
(1)求曲線C,P的直角坐標方程.
(2)設(shè)曲線C和曲線P的交點為A,B,求|AB|.

查看答案和解析>>

同步練習冊答案