【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)若恒成立,求的取值范圍;

(Ⅲ)證明:總存在,使得當(dāng),恒有.

【答案】123)見解析

【解析】試題分析:

(Ⅰ)求出導(dǎo)數(shù), 就是切線的斜率,由點(diǎn)斜式寫出直線方程;

(Ⅱ)不等式可化為,因此只要求的最大值,即得結(jié)論.這可利用導(dǎo)數(shù)的知識(shí)求解.

(Ⅲ) ,設(shè),利用導(dǎo)數(shù)知識(shí)求出的單調(diào)增區(qū)間為,減區(qū)間為,注意到,因此當(dāng)時(shí),可取即符合題意;當(dāng)時(shí),用放縮法,由(Ⅱ),即,因此有,由,此時(shí)有,取,由,因此是遞減,滿足題意.

試題解析:

的定義域?yàn)?/span>

(Ⅰ)當(dāng)時(shí), , ,

,

所以,所求切線方程為

(Ⅱ)因?yàn)?/span>,所以. . ,

,則

得,

所以, , ,

所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,

所以,所以.

(III) ,

,

所以, , , ,

所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,

因?yàn)?/span>,所以,

當(dāng)時(shí),存在,使得當(dāng),恒有,即,

當(dāng)時(shí),由(Ⅱ)知, ,即,

所以,

得, ,所以.

,存在,使得當(dāng),恒有,即.

綜合上所述,總存在,使得當(dāng),恒有

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>0且a≠1,如果函數(shù)y=a2x+2ax﹣1在[﹣1,1]上的最大值為7,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體如圖所示,底面為矩形,其中平面, .若, , 分別是, 的中點(diǎn),其中

(Ⅰ)證明: ;

(Ⅱ)若二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(m>0)的離心率為,A,B分別為橢圓的左、右頂點(diǎn),F(xiàn)是其右焦點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn).

(1)求m的值及橢圓的準(zhǔn)線方程;

(2)設(shè)過點(diǎn)B且與x軸的垂直的直線交AP于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個(gè)命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對(duì)稱圖形;④關(guān)于x的方程f(x)=0最多有兩個(gè)實(shí)根.其中正確的命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語和語文某次考試成績進(jìn)行抽樣分析. 將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(單位:分)繪成折線圖如下:

(Ⅰ)若第一段抽取的學(xué)生編號(hào)是006,寫出第五段抽取的學(xué)生編號(hào);

(Ⅱ)在這兩科成績差超過20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績均是語文成績高于英語成績的概率;

(Ⅲ)根據(jù)折線圖,比較該校高二年級(jí)學(xué)生的語文和英語兩科成績,寫出你的結(jié)論和理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足: ,對(duì)于,都有(其中為常數(shù)),則稱具有性質(zhì)“”.

(Ⅰ)若具有性質(zhì)“”,且, ,求;

(Ⅱ)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , ,判斷是否具有性質(zhì)“”,并說明理由;

(Ⅲ)設(shè)既具有性質(zhì)“”,又具有性質(zhì)“”,其中, 互質(zhì),求證: 具有性質(zhì)“”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“城中觀海”是近年來國內(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個(gè)重要原因.暴雨會(huì)沖刷城市的垃圾雜物一起進(jìn)入下水道,據(jù)統(tǒng)計(jì),在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時(shí))是雜物垃圾密度x(單位:千克/立方米)的函數(shù).當(dāng)下水道的垃圾雜物密度達(dá)到2千克/立方米時(shí),會(huì)造成堵塞,此時(shí)排水量為0;當(dāng)垃圾雜物密度不超過0.2千克/立方米時(shí),排水量是90立方米/小時(shí);研究表明,0.2≤x≤2時(shí),排水量V是垃圾雜物密度x的一次函數(shù).
(1)當(dāng)0≤x≤2時(shí),求函數(shù)V(x)的表達(dá)式;
(2)當(dāng)垃圾雜物密度x為多大時(shí),垃圾雜物量(單位時(shí)間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時(shí))f(x)=xV(x)可以達(dá)到最大,求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時(shí),輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設(shè)輪船沿直線方向以海里/小時(shí)的航速勻速行駛,經(jīng)過小時(shí)與輪船相遇.

(1)若使相遇時(shí)輪船航距最短,則輪船的航行速度大小應(yīng)為多少?

(2)假設(shè)輪船的最高航速只能達(dá)到30海里/小時(shí),則輪船以多大速度及什么航行方向才能在最短時(shí)間與輪船相遇,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案