【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時(shí),輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設(shè)輪船沿直線方向以海里/小時(shí)的航速勻速行駛,經(jīng)過(guò)小時(shí)與輪船相遇.
(1)若使相遇時(shí)輪船航距最短,則輪船的航行速度大小應(yīng)為多少?
(2)假設(shè)輪船的最高航速只能達(dá)到30海里/小時(shí),則輪船以多大速度及什么航行方向才能在最短時(shí)間與輪船相遇,并說(shuō)明理由.
【答案】(1)輪船以海里/小時(shí)的速度航行,相遇時(shí)輪船航距最短;(2)航向?yàn)楸逼珫|,航速為30海里/小時(shí),輪船能在最短時(shí)間與輪船相遇.
【解析】試題分析:(1)設(shè)兩輪船在處相遇,在 中,利用余弦定理得出關(guān)于t的函數(shù),從而得出的最小值及其對(duì)應(yīng)的,得出速度;
(2)利用余弦定理計(jì)算航行時(shí)間,得出 距離,從而得出 的度數(shù),得出航行方案.
試題解析:(1)設(shè)相遇時(shí)輪船航行的距離為海里,則
.
∴當(dāng)時(shí), , ,
即輪船以海里/小時(shí)的速度航行,相遇時(shí)輪船航距最短.
(2)設(shè)輪船與輪船在處相遇,則 ,
即.
∵,
∴,即,解得,又時(shí),
∴時(shí), 最小且為,此時(shí)中,
∴航向?yàn)楸逼珫|,航速為30海里/小時(shí),
輪船能在最短時(shí)間與輪船相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若恒成立,求的取值范圍;
(Ⅲ)證明:總存在,使得當(dāng),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入,已知研發(fā)投入 (十萬(wàn)元)與利潤(rùn) (百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由資料知對(duì)呈線性相關(guān)關(guān)系。試求:
(1)線性回歸方程;
(2)估計(jì)時(shí),利潤(rùn)是多少?
附:利用“最小二乘法”計(jì)算a,b的值時(shí),可根據(jù)以下公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一汽車(chē)廠生產(chǎn)A,B,C三類(lèi)轎車(chē),每類(lèi)轎車(chē)均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月產(chǎn)量如表(單位:輛):
轎車(chē)A | 轎車(chē)B | 轎車(chē)C | |
舒適型 | 100 | 150 | z |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
按類(lèi)型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車(chē)中抽取50輛,其中有A類(lèi)轎車(chē)10輛。
(1)求z的值;
(2)用分層抽樣的方法在C類(lèi)轎車(chē)中抽取一個(gè)容量為5的樣本。將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車(chē)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的焦點(diǎn)為,直線過(guò)且依次交拋物線及圓于點(diǎn)四點(diǎn),則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( )2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)偶函數(shù)f(x)滿足f(x)=x3﹣8(x≥0),則{x|f(x﹣2)>0}=( )
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形, .
(1)求證:直線直線;
(2)若直線與底面成的角為60°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式;
(3)設(shè)函數(shù) ,若對(duì)任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com