【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開(kāi)車(chē)到公司上班路上有L1、L2兩條路線(xiàn),L1路線(xiàn)上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為 ;L2路線(xiàn)上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為 , .
(1)若走L1路線(xiàn),求最多遇到1次紅燈的概率;
(2)若走L2路線(xiàn),求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線(xiàn)中選擇一條最好的上班路線(xiàn),并說(shuō)明理由.
【答案】
(1)解:設(shè)“走L1路線(xiàn)最多遇到1次紅燈”為事件A,包括沒(méi)有遇到紅燈和只遇到紅燈一次兩種情況.
則 ,
所以走L1路線(xiàn),最多遇到1次紅燈的概率為
(2)解:依題意,X的可能取值為0,1,2.
, , .
隨機(jī)變量X的分布列為:
X | 0 | 1 | 2 |
P |
所以
(3)解:設(shè)選擇L1路線(xiàn)遇到紅燈次數(shù)為Y,隨機(jī)變量Y服從二項(xiàng)分布Y~ ,所以 .
因?yàn)镋X<EY,所以選擇L2路線(xiàn)上班最好
【解析】(1)利用二項(xiàng)分布即可得出;(2)利用相互獨(dú)立事件的概率計(jì)算公式及離散型隨機(jī)變量的期望計(jì)算公式即可得出;(3)由于走路線(xiàn)L1時(shí)服從二項(xiàng)分布即可得出期望,比較走兩條路的數(shù)學(xué)期望的大小即可得出要選擇的路線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD的四條側(cè)棱長(zhǎng)相等,底面ABCD為正方形,M為PB的中點(diǎn),求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線(xiàn)PD與CM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的 (縱坐標(biāo)不變),再將所得到的圖象上所有點(diǎn)向左平移 個(gè)單位,所得函數(shù)圖象的解析式為( )
A.y=sin(2x﹣ )
B.y=sin(2x+ )
C.y=sin( x+ )
D.y=sin( x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, , 底面, ,且.
(1)若為上一點(diǎn),且,證明:平面平面.
(2)若為棱上一點(diǎn),且平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次體育興趣小組的聚會(huì)中,要安排人的座位,使他們?cè)谌鐖D所示的個(gè)椅子中就坐,且相鄰座位(如與, 與)上的人要有共同的體育興趣愛(ài)好.現(xiàn)已知這人的體育興趣愛(ài)好如下表所示,且小林坐在號(hào)位置上,則號(hào)位置上坐的是( )
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛(ài)好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車(chē) |
A. 小方 B. 小張 C. 小周 D. 小馬
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍;
(2)設(shè)(),證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 :
(1)證明f(x)是R上的增函數(shù);
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,請(qǐng)求出a的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的中心為E(﹣1,0),一邊AB所在的直線(xiàn)方程為x+3y﹣5=0,求其它三邊所在的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意x1 , x2∈(0,+∞)都有 <0(x1≠x2),若實(shí)數(shù)a滿(mǎn)足f(log3a﹣1)+2f( a)≥3f(1),則a的取值范圍是( )
A.[ ,3]
B.[1,3]
C.(0, )
D.(0,3]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com