分析 (I)求導,由題意可知:2x2+4x-a=0在(-2,+∞)內有兩個不相等實根,構造輔助函數,利用函數的性質,即可求得實數a的取值范圍;
(II)由(I)可知,利用韋達定理,則$\frac{{f({x_1})}}{x_2}=\frac{{x_1^2-aln({x_1}+2)}}{x_2}={x_2}+\frac{4}{x_2}-2({x_2}+2)ln(-{x_2})+4$,構造輔助函數.利用導數求得函數的單調區(qū)間,則F(x)<F(1)=-1,即$\frac{{f({x_1})}}{x_2}<-1$.
解答 解:(Ⅰ)由題意,$f'(x)=2x-\frac{a}{x+2}(x>-2)$,-----------------(1分)
∵函數f(x)存在兩個極值點x1,x2,且x1<x2,
∴關于x的方程$2x-\frac{a}{x+2}=0$,
即2x2+4x-a=0在(-2,+∞)內有兩個不相等實根.--------------(2分)
令φ(x)=2x2+4x-a,
則$\left\{{\begin{array}{l}{△=16+8a>0}\\{φ(-2)>0}\end{array}}\right.$-----------------------------------------(3分)
解得-2<a<0.所以,實數a的取值范圍(-2,0).-------------(4分)
(Ⅱ)證明:由(Ⅰ)知$\left\{{\begin{array}{l}{{x_1}{x_2}=-\frac{a}{2}}\\{{x_1}+{x_2}=-2}\\{-1<{x_2}<0}\end{array}}\right.$
∴$\frac{{f({x_1})}}{x_2}=\frac{{x_1^2-aln({x_1}+2)}}{x_2}={x_2}+\frac{4}{x_2}-2({x_2}+2)ln(-{x_2})+4$,---------(10分)
令-x2=x,則0<x<1,且$\frac{{f({x_1})}}{x_2}=-x-\frac{4}{x}+2(x-2)lnx+4$,
令$F(x)=-x-\frac{4}{x}+2(x-2)lnx+4(0<x<1)$,則------------------(11分)
$F'(x)=-1+\frac{4}{x^2}+2lnx+\frac{2(x-2)}{x}=\frac{4}{x^2}-\frac{4}{x}+2lnx+1(0<x<1)$------(12分)
∴$F''(x)=-\frac{8}{x^3}+\frac{4}{x^2}+\frac{2}{x}=\frac{{2({x^2}+2x-4)}}{x^3}$,
∵0<x<1,
∴F''(x)<0即F'(x)在(0,1)上是減函數,
∴F'(x)>F'(1)=1>0,
∴F(x)在(0,1)上是增函數,------------(13分)
∴F(x)<F(1)=-1,即$\frac{{f({x_1})}}{x_2}<-1$,
所以,$\frac{{f({x_1})}}{x_2}+1<0$.------------------------------------(14分)
點評 本題考查導數的綜合應用,考查導數與函數單調性的關系,利用導數求函數的最值,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 32 | B. | 24 | C. | 20 | D. | 16 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1∈M | B. | 2∈M | C. | (∁RB)⊆A | D. | B⊆A |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|0<x<1} | C. | {x|x>2} | D. | ∅ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com