【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌馬獲勝的概率為( )
A.
B.
C.
D.

【答案】A
【解析】設(shè)齊王的三匹馬分別記為a1,a2,a3,田忌的三匹馬分別記為b1,b2,b3,

從雙方的馬匹中隨機選一匹進行一場比賽,其情況有:

(a1, b1)、(a1, b2) 、(a1,b3) 、(a2, b1) 、(a2, b2)、(a2,b3) 、(a3, b1) 、(a3, b2) 、(a3,b3)共9種;

其中田忌獲勝的有三種(a1, b2) 、(a1,b3) 、(a2,b3),

則田忌獲勝的概率為 ,

故答案為::A.

古典概型主要算出基本事件的總數(shù),有多少基本事件符合條件,用公式求概率。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時,f(x)=3x﹣1,則f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱與四棱錐的組合體中,已知平面,四邊形是平行四邊形, , , ,設(shè)是線段中點.

(1)求證: 平面;

(2)證明:平面平面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的 城市和交通擁堵嚴(yán)重的 城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此 列聯(lián)表,并據(jù)此樣本分析是否有 的把握認為城市擁堵與認可共享單車有關(guān):

合計

認可

不認可

合計

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,漢諾塔問題是指有3根桿子A,B,CB桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動一個碟子,大的碟子不能疊在小的碟子上面.把B桿上的4個碟子全部移到A桿上,最少需要移動( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市自來水公司每兩個月(記為一個收費周期)對用戶收一次水費,收費標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過噸時,按每噸元收;當(dāng)該用戶用水量超過噸時,超出部分按每噸元收取

(1)記某用戶在一個收費周期的用水量為噸,所繳水費為元,寫出關(guān)于的函數(shù)解析式.

(2)在某一個收費周期內(nèi),若甲、乙兩用戶所繳水費的和為元,且甲、乙兩用戶用水量之比為,試求出甲、乙兩用戶在該收費周期內(nèi)各自的用水量和水費

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx=-3x2+a6-ax+6.

1解關(guān)于a的不等式f1>0;

2若不等式fx>b的解集為-1,3,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若函數(shù)F(x)= +ax2 上為減函數(shù),求 的取值范圍;
(2)當(dāng) 時, ,當(dāng) 時,方程 - =0有兩個不等的實根,求實數(shù) 的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

日需求量n

14

15

16

17

18

19

20

  數(shù)

10

20

16

16

15

13

10

(1)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;

(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

查看答案和解析>>

同步練習(xí)冊答案