若(ax2+
1
x
5的展開式中x4的系數(shù)為80,則實數(shù)a=
 
考點:二項式系數(shù)的性質
專題:二項式定理
分析:先求出二項式展開式的通項公式,再令x的冪指數(shù)等于4,求得r的值,即可求得展開式中x4的系數(shù),再根據(jù)x4的系數(shù)為80求得a的值.
解答: 解:(ax2+
1
x
5的展開式的通項公式為Tr+1=
C
r
5
•a5-r•x10-3r,
令10-3r=4,求得r=2,故展開式中x4的系數(shù)為
C
2
5
•a3=80,則實數(shù)a=2,
故答案為:2.
點評:本題主要考查二項式定理的應用,二項式系數(shù)的性質,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別為a,b,c且滿足sinA(
3
cosA+sinA)=
3
2

(Ⅰ)求角A;
(Ⅱ)若a=2
2
,求△ABC面積S△ABC最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對吉安市某重點高中男女同學是否喜歡物理進行了一個調查,調查者隨機調查了146名學生,下表給出了部分調查結果:
喜歡物理情況
學生
喜歡 不喜歡 總計
男同學 46 b 76
女同學 c d e
總計 f 80 n=146
(1)根據(jù)以上數(shù)據(jù),求出上述2×2聯(lián)表中b,c,d,e,f;
(2)試問是否有99%以上把握認為男女同學喜歡物理的程度有差異?
參考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有關聯(lián) 沒有關聯(lián) 90% 95% 99%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①某班級一共有52名學生,現(xiàn)將該班學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知7號、33號、46號同學在樣本中,那么樣本中另一位同學的編號為23;
②一組有六個數(shù)的數(shù)據(jù)是1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;
③根據(jù)具有線性相關關系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,
.
x
=1,
.
y
=3,則a=1;
其中正確的命題有
 
(請?zhí)钌纤姓_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,a3≤4,a5≤6,Sn為數(shù)列{an}的前n的和,則S6的最大值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)(4+m)(16-4m+m2)=
 

(2)(a+2b-c)2=a2+4b2+c2+
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(1-x)6(1+x+x2)的展開式中,x2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若隨機變量X~B(3,
1
2
),則P(X=2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點P為正方形ABCD對角線BD上的點,若
AP
PB
的最大值為2,則該正方形的邊長為(  )
A、4
2
B、4
C、2
2
D、2

查看答案和解析>>

同步練習冊答案