對(duì)吉安市某重點(diǎn)高中男女同學(xué)是否喜歡物理進(jìn)行了一個(gè)調(diào)查,調(diào)查者隨機(jī)調(diào)查了146名學(xué)生,下表給出了部分調(diào)查結(jié)果:
喜歡物理情況
學(xué)生
喜歡 不喜歡 總計(jì)
男同學(xué) 46 b 76
女同學(xué) c d e
總計(jì) f 80 n=146
(1)根據(jù)以上數(shù)據(jù),求出上述2×2聯(lián)表中b,c,d,e,f;
(2)試問是否有99%以上把握認(rèn)為男女同學(xué)喜歡物理的程度有差異?
參考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有關(guān)聯(lián) 沒有關(guān)聯(lián) 90% 95% 99%
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題
分析:(1)根據(jù)列聯(lián)表中各數(shù)據(jù)之間的關(guān)系求解;
(2)代入公式計(jì)算相關(guān)指數(shù)K2的觀測(cè)值,比較與6.635的大小可得判斷有關(guān)的可靠性程度.
解答: 解:(1)根據(jù)列聯(lián)表中各數(shù)據(jù)之間的關(guān)系得:b=30,f=66,c=20,d=50,e=70;
(2)相關(guān)指數(shù)x2=
146×(46×50-20×30)2
66×80×76×70
=15.02>6.635.
∴有99%以上把握認(rèn)為喜歡物理的程度與男女有關(guān).
點(diǎn)評(píng):本題考查了獨(dú)立性思想方法,熟練掌握列聯(lián)表中各數(shù)據(jù)之間的關(guān)系及相關(guān)指數(shù)觀測(cè)值與臨界值大小比較的含義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是奇函數(shù),且在區(qū)間[-
π
2
,0]內(nèi)單調(diào)遞減,則f(x)可以是( 。
A、sin(π-x)
B、cos(π+x)
C、sin(
π
2
-x)
D、cos(
π
2
+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校高三年級(jí)學(xué)生一次數(shù)學(xué)測(cè)試的400份試卷中隨機(jī)抽取若干份試卷作為樣本進(jìn)行分析評(píng)估,抽取的試卷成績(jī)的莖葉圖和頻率分布直方圖都都受到了不同程度的損壞,其可見部分如下,據(jù)此解答下列問題:
(Ⅰ)求抽取的成績(jī)?cè)赱80,90)的試卷份數(shù)及樣本數(shù)據(jù)的中位數(shù);
(Ⅱ)若樣本數(shù)據(jù)中得分在[80,90)的數(shù)學(xué)成績(jī)的平均分為85,估計(jì)該校高三年級(jí)學(xué)生此次數(shù)學(xué)測(cè)試的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求a,b
(2)討論f(1)和f(-1)是函數(shù)f(x)的極大值還是極小值;
(3)過點(diǎn)A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意實(shí)數(shù)x,不等式|x+2|+|x-2|≥a恒成立.
(1)求a的取值范圍;
(2)當(dāng)a取最大值時(shí),求f(x)=
-x2-
1
2
ax+3
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
x+1
(x>-1).
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊為a、b、c,且滿足cos2B=-
1
2

(1)求角B的值;
(2)若b=
3
且b≤a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(ax2+
1
x
5的展開式中x4的系數(shù)為80,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,若c=2,b=1,B=30°,則C=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案