【題目】設函數(shù)是定義在上的偶函數(shù),且對任意的恒成立,且當時,.
(1)求證:是以2為周期的函數(shù)(不需要證明2是的最小正周期);
(2)對于整數(shù),當時,求函數(shù)的解析式;
(3)對于整數(shù),記在有兩個不等的實數(shù)根},求集合.
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位長度后,再將所得的圖象向下平移一個單位長度得到函數(shù)的圖象,且的圖象與直線相鄰兩個交點的距離為,若對任意恒成立,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,微信越來越受歡迎,許多人通過微信表達自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗,支付環(huán)節(jié)由此變得簡便而快捷.某商場隨機對商場購物的100名顧客進行統(tǒng)計,得到如下的列聯(lián)表。
40歲以下 | 40歲以上 | 合計 | |
使用微信支付 | 35 | 15 | 50 |
未使用微信支付 | 20 | 30 | 50 |
合計 | 55 | 45 | 100 |
參考公式:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,則所得到的統(tǒng)計學結論正確的是( )
A. 有的把握認為“使用微信支付與年齡有關”
B. 有的把握認為“使用微信支付與年齡有關”
C. 在犯錯誤的概率不超過的前提下,認為“使用微信支付與年齡有關”
D. 在犯錯誤的概率不超過的前提下,認為“使用微信支付與年齡無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與的關系,求關于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關系,可得回歸方程:,經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的相關指數(shù)分別約為和,請用說明選擇哪個回歸模型更合適,并用此模型預測超市應支出多少萬元廣告費,能獲得最大的銷售額?最大的銷售額是多少?(精確到個位數(shù))
參數(shù)數(shù)據(jù)及公式:,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上頂點為點,右焦點為.延長交橢圓于點,且滿足.
(1)試求橢圓的標準方程;
(2)過點作與軸不重合的直線和橢圓交于兩點,設橢圓的左頂點為點,且直線分別與直線交于兩點,記直線的斜率分別為,則與之積是否為定值?若是,求出該定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對某種雞的時段產(chǎn)蛋量(單位: )和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根據(jù)散點圖判斷, 與哪一個更適宜作為該種雞的時段產(chǎn)蛋量關于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關于的回歸方程;
(3)已知時段投入成本與的關系為,當時段控制溫度為28℃時,雞的時段產(chǎn)蛋量及時段投入成本的預報值分別是多少?
附:①對于一組具有有線性相關關系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的左、右焦點分別為, 軸,直線交軸于點,,為橢圓上的動點,的面積最大值為1.
(1)求橢圓的方程;
(2)如圖,過點作兩條直線與橢圓分別交于,且使軸,問四邊形的兩條對角線的交點是否為定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點為圓心,橢圓的短半軸長為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過點M(3,0)的直線與橢圓C相交TA,B兩點,設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)t取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com