【題目】已知橢圓C)的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn)P,滿足.,

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)已知A,B分別是橢圓C的左、右頂點(diǎn),過(guò)的直線交橢圓CMN兩點(diǎn),記直線的交點(diǎn)為T,是否存在一條定直線l,使點(diǎn)T恒在直線l上?

【答案】1;(2)存在.

【解析】

1)在內(nèi)利用余弦定理求得,根據(jù)橢圓的定義求得,由此求得,從而求得橢圓的標(biāo)準(zhǔn)方程.

2)設(shè),,,利用、求得的關(guān)系式,設(shè)的方程為與橢圓的方程聯(lián)立,并寫出韋達(dá)定理,并代入上述求得的的關(guān)系式,由此判斷出橫在直線.

1)設(shè),內(nèi),由余弦定理得,

化簡(jiǎn)得,解得,

,∴,

所以橢圓C的標(biāo)準(zhǔn)方程為

2)已知,設(shè),

,①

,②

兩式相除得.,

,③

設(shè)的方程為,代入整理,

,恒成立.

,代入③,

,得到,故點(diǎn)T在定直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn)、.

1)求實(shí)數(shù)的取值范圍;

2)設(shè)點(diǎn)是線段的中點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn));否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn).這樣,該組個(gè)人的血總共需要化驗(yàn).假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè).試比較方案②中,分別取23,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來(lái)上大學(xué)的費(fèi)用,從孩子一周歲生日開(kāi)始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)g(x)ax2bxc(a≠0)滿足g(x1)2xg(x),且g(0)1.

1)求g(x)的解析式;

2)若在區(qū)間[1,1]上,不等式g(x)-t>2x恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)證明:在區(qū)間上存在唯一零點(diǎn);

(2),若時(shí)有最大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn), 為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問(wèn):在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形所在平面與等邊所在平面互相垂直,,分別為,的中點(diǎn).

1)求證:平面.

2)試問(wèn):在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,,分別為的中點(diǎn),.

(1)求證:平面平面;

(2)設(shè),若平面與平面所成銳二面角,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案