如圖:在空間四邊形ABCD中,AB,BC,BD兩兩垂直,且AB=BC=2,E是AC的中點(diǎn),異面直線(xiàn)AD和BE所成的角為,求BD的長(zhǎng)度.(15分)
解:建立如圖所示的空間直角坐標(biāo)系,由題意有,E(1,1,0)。
設(shè)D(0,0,z),則(1,1,0),=(0,-2,z)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).

(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐的底面是正方形,側(cè)棱底面,,的中點(diǎn).
(1)證明平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱中,底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)為3,且側(cè)棱,點(diǎn)的中點(diǎn).
(1)  求證:;(2)求證:∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)(理科做)在如圖所示的幾何體中,平面,平面,,的中點(diǎn).建立適當(dāng)?shù)目臻g直角坐標(biāo)系,解決下列問(wèn)題:

⑴求證:
⑵求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中底面,的中點(diǎn).
(1)試用表示,并判斷直線(xiàn)與平面的位置關(guān)系;
(2)若平面,求異面直線(xiàn)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知長(zhǎng)方體ABCD—A1B1C1D1中,AB=BC=2,AA1=4,
E是棱CC1上的點(diǎn),且BE⊥B1C.
(1)求CE的長(zhǎng);
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)分別是軸,軸正方向上的單位向量,,。若用?來(lái)表示的夾角,則?等于    (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)的方向向量為,直線(xiàn)的方向向量為,那么的角是 (     )                       
A.30°B.45°C.150°D.160°

查看答案和解析>>

同步練習(xí)冊(cè)答案