【題目】如圖,梯形與矩形所在平面相互垂直, , , , .
(Ⅰ)求證: 平面;
(Ⅱ)求四棱錐的側(cè)面積.
【答案】(Ⅰ)見解析.
(Ⅱ).
【解析】試題分析:(Ⅰ)由直線和平面平行的判定定理,證得平面和平面,再利用面面平行的判定定理,得到平面平面,進(jìn)而證得平面.
(Ⅱ)由(1),過點(diǎn)作交于點(diǎn),連接,得: ,求德和,再得,求得,再由,所以,求得,求和得到幾何體的表面積.
試題解析:
(Ⅰ)因?yàn)?/span>, 平面, 平面,
所以平面,同理可得平面,
又因?yàn)?/span>,所以平面平面,
因?yàn)?/span>平面,所以平面.
(Ⅱ)因?yàn)槠矫?/span>平面,平面平面, ,
所以平面,∴, ,
過點(diǎn)作交于點(diǎn),連接,
因?yàn)?/span>, , ,易求得: ,所以,
,
因?yàn)?/span>, , ,∴平面,
所以,
,
由, ,得平面,所以,
因?yàn)?/span>,所以, ,
所以四棱錐的側(cè)面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(3,4)
(1)它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.
(2)若直線l與軸,軸的正半軸分別交于點(diǎn),求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為10時(shí),銷售收入的值.
參考公式及數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)若函數(shù)f(x)的圖像中相鄰兩條對(duì)稱軸間的距離不小于,求的取值范圍;
(2)若函數(shù)f(x)的最小正周期為π,且當(dāng)x∈時(shí),f(x)的最大值是,求函數(shù)f(x)的最小值,并說明如何由函數(shù)y=sin2x的圖象變換得到函數(shù)y=f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請(qǐng)?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四面體的表面積為,為棱的中點(diǎn),球為該正四面體的外接球,則過點(diǎn)的平面被球所截得的截面面積的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,直線 的極坐標(biāo)方程為.
(1)若曲線與只有一個(gè)公共點(diǎn),求的值;
(2), 為曲線上的兩點(diǎn),且,求△的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司做了用戶對(duì)其產(chǎn)品滿意度的問卷調(diào)查,隨機(jī)抽取了20名用戶的評(píng)分,得到圖3所示莖葉圖,對(duì)不低于75的評(píng)分,認(rèn)為用戶對(duì)產(chǎn)品滿意,否則,認(rèn)為不滿意,
(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯(cuò)的概率不超過5%的前提下,你是否認(rèn)為“滿意與否”與“性別”有關(guān)?
附:
(Ⅱ) 估計(jì)用戶對(duì)該公司的產(chǎn)品“滿意”的概率;
(Ⅲ) 該公司為對(duì)客戶做進(jìn)一步的調(diào)查,從上述對(duì)其產(chǎn)品滿意的用戶中再隨機(jī)選取2人,求這兩人都是男用戶或都是女用戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)在軸上,且短軸的兩個(gè)頂點(diǎn)與其中一個(gè)焦點(diǎn)的連線構(gòu)成斜邊為的等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線交橢圓于兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以線段為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com