【題目】某運(yùn)輸隊(duì)接到給災(zāi)區(qū)運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為的型卡車,6輛載重為的型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送救災(zāi)物資.已知每輛卡車每天往返的次數(shù)為型卡車16次, 型卡車12次.每輛卡車每天往返的成本為型卡車240元, 型卡車378元.問(wèn)每天派出型卡車與型卡車各多少輛,運(yùn)輸隊(duì)所花的成本最低?
【答案】每天只派8輛型卡車運(yùn)輸,所花成本最低,最低成本為1920元.
【解析】試題分析: 先列表分析各限制條件:每天至少運(yùn)送救災(zāi)物資,8輛載重為的型卡車,6輛載重為的型卡車,10名駕駛員,注意實(shí)際意義條件限制:卡車輛數(shù)為自然數(shù),再根據(jù)限制條件畫出可行域,根據(jù)目標(biāo)函數(shù)(直線)平移得到最值取法.
試題解析:設(shè)每天派出型卡車輛, 型卡車輛,運(yùn)輸隊(duì)所花成本為元,
則.
化簡(jiǎn)得,
目標(biāo)函數(shù).
畫出滿足條件的可行域如圖中陰影部分所示.
由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),截距最小,解方程組,
得點(diǎn)的坐標(biāo)為,而問(wèn)題中, ,故點(diǎn)不是最優(yōu)解.
因此在可行域的整點(diǎn)中,點(diǎn)使取得最小值,即.
故每天只派8輛型卡車運(yùn)輸,所花成本最低,最低成本為1920元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在單調(diào)遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.
(1)①求證:數(shù)列為等差數(shù)列;
②求數(shù)列通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴從區(qū)間內(nèi)任取一個(gè)實(shí)數(shù),設(shè)事件表示“函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn)”,求事件發(fā)生的概率;
⑵若聯(lián)系擲兩次一顆均勻的骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為)得到的點(diǎn)數(shù)分別為和,記事件表示“在上恒成立”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”活動(dòng). 為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì). 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線: 恒過(guò)定點(diǎn),圓經(jīng)過(guò)點(diǎn)和點(diǎn),且圓心在直線上.
(1)求定點(diǎn)的坐標(biāo);
(2)求圓的方程;
(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問(wèn):在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年五一節(jié)”期間,高速公路車輛“較多,交警部門通過(guò)路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問(wèn)題:
(1)求a的值,并說(shuō)明交警部門采用的是什么抽樣方法?
(2)若該路段的車速達(dá)到或超過(guò)90km/h即視為超速行駛,求超速行駛的概率
(3)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有__________.(寫出所有正確說(shuō)法的序號(hào))
①已知關(guān)于的不等式的角集為,則實(shí)數(shù)的取值范圍是.
②已知等比數(shù)列的前項(xiàng)和為,則、、也構(gòu)成等比數(shù)列.
③已知函數(shù)(其中且)在上單調(diào)遞減,且關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)解,則.
④已知,且,則的最小值為.
⑤在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式恒成立,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC.E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com