【題目】2015年五一節(jié)”期間,高速公路車(chē)輛“較多,交警部門(mén)通過(guò)路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車(chē)行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車(chē)速度,將行車(chē)速度km/h分成七段[60,65,[65,70,[70,75,[75,80,[80,85,[85,90,[90,95后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問(wèn)題:

1求a的值,并說(shuō)明交警部門(mén)采用的是什么抽樣方法?

2若該路段的車(chē)速達(dá)到或超過(guò)90km/h即視為超速行駛,求超速行駛的概率

3求這120輛車(chē)行駛速度的眾數(shù)和中位數(shù)的估計(jì)值精確到0.1。

【答案】1a=0.06,系統(tǒng)抽樣23眾數(shù)為77.5中位數(shù)77.9

【解析】

試題分析:I根據(jù)頻率分布直方圖中所有矩形的面積和為1求得a值,根據(jù)相同抽樣方法的特征判斷其抽樣方法;II利用直方圖求出樣本中車(chē)速在[90,95頻數(shù),利用個(gè)數(shù)比求超速車(chē)輛的概率III根據(jù)眾數(shù)是最高矩形底邊中點(diǎn)的橫坐標(biāo)求眾數(shù);根據(jù)中位數(shù)是從左數(shù)小矩形面積和為0.5的矩形底邊上點(diǎn)的橫坐標(biāo)求中位數(shù);

試題解析:1由圖知:a+0.05+0.04+0.02+0.02+0.005+0.005×5=1,∴a=0.06,該抽樣方法是系統(tǒng)抽樣;

2樣本中車(chē)速在[90,95有0.005×5×120=3

∴估計(jì)該路段車(chē)輛超速的概率P=

3根據(jù)眾數(shù)是最高矩形底邊中點(diǎn)的橫坐標(biāo),∴眾數(shù)為77.5;

∵前三個(gè)小矩形的面積和為0.005×5+0.020×5+0.040×5=0.325,第四個(gè)小矩形的面積為0.06×5=0.3,

∴中位數(shù)在第四組,設(shè)中位數(shù)為75+x,則0.325+0.06×x=0.5x≈2.9,

∴數(shù)據(jù)的中位數(shù)為 77.9;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,

(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)為,求的值;

(2)討論函數(shù)的單調(diào)性;

(3)設(shè)函數(shù),若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),若不等式的解集為1,4,且方程fx=x有兩個(gè)相等的實(shí)數(shù)根。

1求fx的解析式;

2若不等式fx>mx在上恒成立,求實(shí)數(shù)m的取值范圍;

3解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD平面ABCD,PDQA,QA=AB=PD

I證明:平面PQC平面DCQ

II求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)輸隊(duì)接到給災(zāi)區(qū)運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為型卡車(chē),6輛載重為型卡車(chē),10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送救災(zāi)物資.已知每輛卡車(chē)每天往返的次數(shù)為型卡車(chē)16次, 型卡車(chē)12次.每輛卡車(chē)每天往返的成本為型卡車(chē)240元, 型卡車(chē)378元.問(wèn)每天派出型卡車(chē)與型卡車(chē)各多少輛,運(yùn)輸隊(duì)所花的成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,,過(guò)橢圓的右頂點(diǎn)和上頂點(diǎn)的直線(xiàn)與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點(diǎn), 過(guò)點(diǎn)分別作直線(xiàn)交橢圓兩點(diǎn), 設(shè)這兩條直線(xiàn)的斜率分別為,且,證明: 直線(xiàn) 過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng)。現(xiàn)給出以下四個(gè)結(jié)論:

①數(shù)列0,1,3具有性質(zhì)P;

②數(shù)列0,2,4,6具有性質(zhì)P;

③若數(shù)列A具有性質(zhì)P,則a1=0;

④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2。

其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在扶貧活動(dòng)中,為了盡快脫貧無(wú)債務(wù)致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專(zhuān)賣(mài)店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒(méi)有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開(kāi)支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)不計(jì)息.在甲提供的資料中:這種消費(fèi)品的進(jìn)價(jià)為每件14元;該店月銷(xiāo)量Q百件與銷(xiāo)售價(jià)格P的關(guān)系如圖所示;每月需各種開(kāi)支2 000元.

1當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;

2企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明對(duì)本班同學(xué)做調(diào)查,提出問(wèn)題你考試作弊嗎?這樣的問(wèn)法______(填合理不合理),理由是______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案