【題目】已知函數(shù)f(x)= sin2x+ sin2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )= ,△ABC的面積為3 ,求a的最小值.

【答案】
(1)解:∵f(x)= sin2x+ sin2x= + sin2x= sin(2x﹣ )+

∴2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,

∴函數(shù)f(x)的單調(diào)遞減區(qū)間為:[kπ+ ,kπ+ ],k∈Z


(2)解:∵f( )= ,即: sin(2× )+ = ,化簡(jiǎn)可得:sin(A﹣ )=

又∵A∈(0,π),可得:A﹣ ∈(﹣ ),

∴A﹣ = ,解得:A= ,

∵SABC= bcsinA= bc=3 ,解得:bc=12,

∴a= = =2 .(當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立).

故a的最小值為2


【解析】(1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)= sin(2x﹣ )+ ,由2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z,即可得解函數(shù)f(x)的單調(diào)遞減區(qū)間.(2)由f( )= ,化簡(jiǎn)可得:sin(A﹣ )= ,由A∈(0,π),可得A﹣ 的范圍,從而可求A的值,利用三角形面積公式可求bc=12,利用余弦定理,基本不等式即可解得a的最小值.
【考點(diǎn)精析】利用正弦定理的定義和余弦定理的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B、C三位老師分別教數(shù)學(xué)、英語(yǔ)、體育、勞技、語(yǔ)文、閱讀六門(mén)課,每位教兩門(mén).已知:

(1)體育老師和數(shù)學(xué)老師住在一起,

(2)A老師是三位老師中最年輕的,

(3)數(shù)學(xué)老師經(jīng)常與C老師下象棋,

(4)英語(yǔ)老師比勞技老師年長(zhǎng),比B老師年輕,

(5)三位老師中最年長(zhǎng)的老師比其他兩位老師家離學(xué)校遠(yuǎn).

問(wèn):A、B、C三位老師每人各教哪幾門(mén)課?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為(
A.
B.2π
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1 , a3 , a7成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,若Tn≤λan+1對(duì)n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)共派出個(gè)男生和個(gè)女生參加學(xué)校運(yùn)動(dòng)會(huì)的入場(chǎng)儀式,其中男生倪某為領(lǐng)隊(duì).入場(chǎng)時(shí),領(lǐng)隊(duì)男生倪某必須排第一個(gè),然后女生整體在男生的前面,排成一路縱隊(duì)入場(chǎng),共有種排法;入場(chǎng)后,又需從男生(含男生倪某)和女生中各選一名代表到主席臺(tái)服務(wù),共有種選法.(1)試求; (2)判斷的大。),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
(1)求|AB|的值;
(2)求點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“開(kāi)門(mén)大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門(mén),依次按響門(mén)上的門(mén)鈴,門(mén)鈴會(huì)播放一段音樂(lè)(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門(mén)對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱(chēng)與否的人數(shù)如圖所示.
(1)寫(xiě)出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱(chēng)與否和年齡有關(guān);說(shuō)明你的理由;(下面的臨界值表供參考) (參考公式:K2= ,其中n=a+b+c+d)

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(2)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在亞丁灣海域執(zhí)行護(hù)航任務(wù)的中國(guó)海軍“徐州”艦,在A處收到某商船在航行中發(fā)出求救信號(hào)后,立即測(cè)出該商船在方位角方位角(是從某點(diǎn)的指北方向線起,依順時(shí)針?lè)较虻侥繕?biāo)方向線之間的水平夾角)為45°、距離A處為10 n mile的C處,并測(cè)得該船正沿方位角為105°的方向,以9 n mile/h的速度航行,“徐州”艦立即以21 n mile/h的速度航行前去營(yíng)救.

(1)“徐州”艦最少需要多少時(shí)間才能靠近商船?

(2)在營(yíng)救時(shí)間最少的前提下,“徐州”艦應(yīng)按照怎樣的航行方向前進(jìn)?(角度精確到0.1°,時(shí)間精確到1min,參考數(shù)據(jù):sin68.2°≈0.9286)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx+x(x﹣a)2(a∈R),若存在 ,使得f(x)>xf'(x)成立,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.
D.(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案