【題目】為調(diào)查甲、乙兩校高三年級(jí)學(xué)生某次聯(lián)考數(shù)學(xué)成績情況,現(xiàn)用簡單隨機(jī)抽樣從這兩個(gè)學(xué)校高三年級(jí)學(xué)生中各抽取30名,以他們的數(shù)學(xué)成績(百分制)作為樣本,樣本數(shù)據(jù)如下.

1)若甲校高三年級(jí)每位學(xué)生被抽到的概率為0.05,求甲校高三年級(jí)學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績的及格率(60分及60分以上為及格);

2)設(shè)甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績分別為,估計(jì)的值.

【答案】15;(20.5.

【解析】

1)設(shè)甲校高三年級(jí)總?cè)藬?shù)為,根據(jù)每位學(xué)生被抽到的概率可構(gòu)造方程求得;根據(jù)樣本中的及格率可估計(jì)得到總體的及格率;

2)根據(jù)樣本估計(jì)總體的原則,樣本數(shù)據(jù)的平均數(shù)之差即為甲、乙兩校的平均數(shù)之差.

1)設(shè)甲校高三年級(jí)總?cè)藬?shù)為,則,解得:

又樣本中甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績的不及格人數(shù)為

估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績的及格率為:

2)用樣本估計(jì)總體,甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績分別為,,由題中數(shù)據(jù)可知:

;

估計(jì)的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,使得為真命題,求的取值范圍;

2)若不等式的解集為D,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對下列命題:

①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;

②點(diǎn) 是函數(shù)的圖象的一個(gè)對稱中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為;

④函數(shù)R恒成立,則.

其中所有正確命題的序號(hào)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點(diǎn)處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓 )的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)動(dòng)點(diǎn) 在橢圓上,且,記直線軸上的截距為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各射擊1 次擊中目標(biāo)的概率分別三分之二和四分之三,假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒有影響,每次射擊是否擊中目標(biāo)相互之間也沒有影響.

1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率.

2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.

3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問:乙恰好射擊5次后被終止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxk>0)

(1)若fx)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;

(2)若存在x>3,使得fx)>1成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中e是自然對數(shù)的底數(shù),kR)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDE中,已知ABCD是邊長為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.

(1)若M是DE的中點(diǎn),試在AC上找一點(diǎn)N,使得MN∥平面ABE,并給出證明;

(2)求多面體ABCDE的體積.

查看答案和解析>>

同步練習(xí)冊答案