【題目】已知圓:,圓與圓關(guān)于直線:對稱.
(1)求圓的方程;
(2)過直線上的點(diǎn)分別作斜率為,4的兩條直線,,使得被圓截得的弦長與被圓截得的弦長相等.
(i)求點(diǎn)的坐標(biāo);
(ii)過點(diǎn)任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.
【答案】(1) (2) (i).(ii)恒相等.見解析
【解析】
(1)根據(jù)軸對稱求得圓的圓心即可.
(2)由題,兩問均可設(shè)與過點(diǎn)任作兩條互相垂直的直線分別為,再由題意得到的距離與到的距離相等,列式求解與證明即可.
(1)設(shè),因?yàn)閳A與圓關(guān)于直線:對稱,,
則直線與直線垂直,中點(diǎn)在直線上,得,
解得,所以圓:.
(2)(i)設(shè),的方程為,即;
的方程為,即.
因?yàn)?/span>被圓截得的弦長與被圓截得的弦長相等,且兩圓半徑相等,
所以到的距離與到的距離相等,即,
所以或.
由題意,到直線的距離,
所以不滿足題意,舍去,
故,點(diǎn)坐標(biāo)為.
(ii)過點(diǎn)任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.
證明如下:
當(dāng)的斜率等于0時(shí),的斜率不存在,被圓截得的弦長與被圓截得的弦長都等于圓的直徑;
當(dāng)的斜率不存在,的斜率等于0時(shí),與圓不相交,與圓不相交.
當(dāng)、的斜率存在且都不等于0,兩條直線分別與兩圓相交時(shí),設(shè)、的方程分別為
,,即,.
因?yàn)?/span>到的距離,
到的距離,所以到的距離與到的距離相等.
因?yàn)閳A與圓的半徑相等,所以被圓截得的弦長與被圓截得的弦長恒相等.
綜上所述,過點(diǎn)任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示圓錐中,為底面圓的兩條直徑,,且,,為的中點(diǎn).求:
(1)該圓錐的表面積;
(2)異面直線與所成的角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)在線段BC是否存在一點(diǎn)E,使得ND⊥FC ,若存在,求出EC的長并證明;
若不存在,請說明理由.
(2)求四面體NEFD體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)為實(shí)數(shù),函數(shù)。
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)且時(shí),。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知k∈R,P(a,b)是直線x+y=2k與圓x2+y2=k2-2k+3的公共點(diǎn),則ab的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列問題中,最適合用簡單隨機(jī)抽樣方法抽樣的是( )
A.某報(bào)告廳有排座位,每排有個(gè)座位,座位號是,有一次報(bào)告廳坐滿了觀眾,報(bào)告會(huì)結(jié)束以后聽取觀眾的意見,要留下名觀眾進(jìn)行座談
B.從十臺冰箱中抽取臺進(jìn)行質(zhì)量檢驗(yàn)
C.某學(xué)校有在編人員人,其中行政人員人,教師人,后勤人員人.教育部門為了解大家對學(xué)校機(jī)構(gòu)改革的意見,要從中抽取容量為的樣本
D.某鄉(xiāng)農(nóng)田有山地畝,丘陵畝,平地畝,洼地畝,現(xiàn)抽取農(nóng)田畝估計(jì)全鄉(xiāng)農(nóng)田平均產(chǎn)量
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,鏈接M,N兩地之間的鐵路是圓心在上的一段圓弧,若點(diǎn)M在O正北方向,且,點(diǎn)N到,距離分別為4km和5km.
建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
若該城市的某中學(xué)擬在O點(diǎn)正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距離點(diǎn)O的最近距離.注:校址視為一個(gè)點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營公司為了解某地區(qū)用戶對該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了200名用戶,得到用戶的滿意度評分,現(xiàn)將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | |||||
頻數(shù) | 12 | 28 | 68 | 40 | |
頻率 | 0.06 | 0.34 | 0.2 |
(1)求表格中的,,的值;
(2)估計(jì)用戶的滿意度評分的平均數(shù);
(3)若從這200名用戶中隨機(jī)抽取50人,估計(jì)滿意度評分高于6分的人數(shù)為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com