【題目】已知k∈R,P(a,b)是直線x+y=2k與圓x2+y2=k2-2k+3的公共點(diǎn),則ab的最大值為________

【答案】9

【解析】

先根據(jù)直線與圓相交,圓心到直線的距離小于等于半徑,以及圓半徑為正數(shù),求出k的范圍,再根據(jù)P(a,b)是直線x+y=2k與圓x2+y2=k2﹣2k+3的公共點(diǎn),滿足直線與圓方程,代入直線與圓方程,化簡(jiǎn),求出用k表示的ab的式子,根據(jù)k的范圍求ab的最大值.

由題意,圓心(0.0)到直線的距離d=

解得﹣3≤k≤1,

∵k2﹣2k+3>0恒成立

k的取值范圍為﹣3≤k≤1,

由點(diǎn)P(a,b)是直線x+y=2k與圓x2+y2=k2﹣2k+3的公共點(diǎn),

得(a+b)2﹣a2﹣b2=2ab=3k2+2k﹣3=3(k+2,

k=﹣3時(shí),ab的最大值為9.

故答案為9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,為棱中點(diǎn),底面是邊長(zhǎng)為2的正方形,為正三角形,平面與棱交于點(diǎn),平面與平面交于直線,且平面平面.

1)求證:;

2)求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點(diǎn)共面,且平面平面

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),則的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓與圓關(guān)于直線對(duì)稱(chēng).

1)求圓的方程;

2)過(guò)直線上的點(diǎn)分別作斜率為,4的兩條直線,,使得被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等.

i)求點(diǎn)的坐標(biāo);

ii)過(guò)點(diǎn)任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長(zhǎng)是否恒相等,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了場(chǎng)比賽,他們所有比賽得分的情況如下:

甲:

乙: .

(1)求甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù).

(2)分別求甲、乙兩名運(yùn)動(dòng)員得分的平均數(shù)、方差,你認(rèn)為哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】任意實(shí)數(shù),,定義,設(shè)函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,,則____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線:,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線.

(1)說(shuō)明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)若直線的方程為,設(shè)的交點(diǎn)為,的交點(diǎn)為,,若的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案