【題目】已知函數(shù)(是自然對數(shù)的底數(shù)).
(Ⅰ)討論極值點的個數(shù);
(Ⅱ)若是的一個極值點,且,證明:.
【答案】(Ⅰ)見解析;(Ⅱ)見解析
【解析】
(I)求得函數(shù)的導函數(shù),對分成四種情況進行分類討論,根據(jù)的單調(diào)區(qū)間,判斷出極值點的個數(shù).
(II)首先結(jié)合(I)以及判斷出,且,由此求得的表達式,利用這個表達的導數(shù)求得最大值為,由此證得.
(Ⅰ)的定義域為,,
①若,則,
所以當時,;當時,,
所以在上遞減,在遞增.
所以為唯一的極小值點,無極大值,
故此時有一個極值點.
②若,令,
則,,
當時,,
則當時,;當時,;
當時,.
所以-2,分別為的極大值點和極小值點,
故此時有2個極值點.
當時,,
且不恒為0,
此時在上單調(diào)遞增,
無極值點
當時,,
則當時,;當時,
;當時,.
所以,-2分別為的極大值點和極小值點,
故此時有2個極值點.
綜上,當時,無極值點;
當時,有1個極值點;
當或時,有2個極值點.
(Ⅱ)證明:若是的一個極值點,
由(Ⅰ)可知,
又,所以,
且,則,
所以.
令,則,
所以,
故
又因為,所以,令,得.
當時,,單調(diào)遞增,
當時,,單調(diào)遞減,
所以是唯一的極大值點,也是最大值點,
即,
故,即.
科目:高中數(shù)學 來源: 題型:
【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結(jié)構極為復雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,則(1)______;(2)如果對,恒成立,那么線段的長度的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在極坐標系(與平面直角坐標系取相同的長度單位,且以原點為極點,以軸非負半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程及直線的直角坐標方程;
(2)設是曲線上的任意一點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體有8個不同頂點,現(xiàn)任意選擇其中4個不同頂點,然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結(jié)論的編號)
①每個面都是直角三角形的四面體;
②每個面都是等邊三角形的四面體;
③每個面都是全等的直角三角形的四面體;
④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)有下述四個結(jié)論:
①是偶函數(shù);②的最大值為;
③在有個零點;④在區(qū)間單調(diào)遞增.
其中所有正確結(jié)論的編號是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列,定義為數(shù)列的一階差分數(shù)列,其中.
(1)若,試斷是否是等差數(shù)列,并說明理由;
(2)若證明是等差數(shù)列,并求數(shù)列的通項公式;
(3)對(2)中的數(shù)列,是否存在等差數(shù)列,使得對一切都成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com