【題目】已知函數(shù)

1)當時,求處的切線方程;

2)討論的單調(diào)性;

3)若有兩個零點,求的取值范圍.

【答案】(1)(2)答案不唯一,具體見解析(3)

【解析】

1)先求出,再寫出切線方程;(2)先求出,再通過對分類討論的單調(diào)性;(3)對分類討論,結(jié)合函數(shù)的圖象求出的取值范圍.

1)當時,,所以,,

所以處的切線方程為

2

時,,所以,得;,得

所以單調(diào)遞減,在單調(diào)遞增:

時,,解得

時,恒成立,所以單調(diào)遞增;

,則,故當時,;

時,,所以單調(diào)遞增,單調(diào)遞減.

,則,故當時,;

時,,所以單調(diào)遞增,單調(diào)遞減.

3)①設(shè),由(2)知,單調(diào)遞減,在單調(diào)遞增.

,,所以有一解:取

,所以有一解,

所以有兩個零點;

②設(shè),只有一個零點;

③設(shè),若,

由(2)知,單調(diào)遞增,又當時,,

不存在兩個零點;

,由(2)知,單調(diào)遞增,在單調(diào)遞減,又當時,,

不存在兩個零點;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紋樣是中國藝術(shù)寶庫的瑰寶,火紋是常見的一種傳統(tǒng)紋樣,為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲2000個點,己知恰有800個點落在陰影部分,據(jù)此可估計陰影部分的面積是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是常數(shù)).

(Ⅰ)求過點與曲線相切的直線方程;

(Ⅱ)是否存在的實數(shù),使得只有唯一的正數(shù),當時不等式恒成立,若這樣的實數(shù)存在,試求,的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點分別為,當動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.

(1)求橢圓的標準方程;

(2)過橢圓的右頂點作互相垂直的兩條直線分別交橢圓兩點(點不同于橢圓的右頂點),證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時)

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計該校學(xué)生每周平均體育運動時間超過4個小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認為該校學(xué)生的每周平均體育運動時間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).

(Ⅰ)討論極值點的個數(shù);

(Ⅱ)若的一個極值點,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實數(shù)常數(shù))

1)當時,求函數(shù)上的單調(diào)區(qū)間;

2)當時,成立,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論上的零點個數(shù);

(2)當時,若存在,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

同步練習(xí)冊答案