【題目】已知函數(shù).

(1)討論上的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)

【答案】(1)見解析;(2)

【解析】

(1)構(gòu)造函數(shù),先將討論上的零點(diǎn)個(gè)數(shù)問題,轉(zhuǎn)化為討論直線與曲線的交點(diǎn)個(gè)數(shù)問題,用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性,求出值域,即可得出結(jié)果;

2)根據(jù)(1)的結(jié)果,由求出零點(diǎn),得到,再由題意得到成立,構(gòu)造函數(shù),用導(dǎo)數(shù)方法研究其單調(diào)性,進(jìn)而可求出結(jié)果.

(1)由,令,

因此討論上的零點(diǎn)個(gè)數(shù),即是討論直線與曲線的交點(diǎn)個(gè)數(shù),

,上恒成立,

上單調(diào)遞增,,

連續(xù)不斷,所以當(dāng)時(shí),上無零點(diǎn);

當(dāng)時(shí),上存在一個(gè)零點(diǎn).

(2)當(dāng)時(shí),由(1)得上存在一個(gè)零點(diǎn),

,

由(1)可得上單調(diào)遞減,在上單調(diào)遞增;

所以

又存在,使成立,

所以,只需成立,即不等式成立,

,

,

易知上恒成立,

上單調(diào)遞增

,所以.

故實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司想了解對(duì)某產(chǎn)品投入的宣傳費(fèi)用與該產(chǎn)品的營(yíng)業(yè)額的影響.右圖是以往公司對(duì)該產(chǎn)品的宣傳費(fèi)用 (單位:萬元)和產(chǎn)品營(yíng)業(yè)額 (單位:萬元)的統(tǒng)計(jì)折線圖.

(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費(fèi)用與產(chǎn)品營(yíng)業(yè)額的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

(Ⅱ)建立產(chǎn)品營(yíng)業(yè)額關(guān)于宣傳費(fèi)用的回歸方程;

(Ⅲ)若某段時(shí)間內(nèi)產(chǎn)品利潤(rùn)與宣傳費(fèi)和營(yíng)業(yè)額的關(guān)系為應(yīng)投入宣傳費(fèi)多少萬元才能使利潤(rùn)最大,并求最大利潤(rùn). (計(jì)算結(jié)果保留兩位小數(shù))

參考數(shù)據(jù):,,,

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量(單位:)對(duì)工期的影響如下表:

降水量

工期延誤天數(shù)

0

1

3

6

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

(1)求這天的平均降水量;

(2)根據(jù)降水量的折線圖,分別估計(jì)該工程施工延誤天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某支教隊(duì)有8名老師,現(xiàn)欲從中隨機(jī)選出2名老師參加志愿活動(dòng),

(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊(duì)男、女老師的人數(shù);

(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品要了解年廣告費(fèi)(單位:萬元)對(duì)年利潤(rùn)(單位:萬元)的影響,對(duì)近4年的年廣告費(fèi)和年利潤(rùn)數(shù)據(jù)作了初步整理,得到下面的表格:

廣告費(fèi)

2

3

4

5

年利潤(rùn)

26

39

49

54

(Ⅰ)用廣告費(fèi)作解釋變量,年利潤(rùn)作預(yù)報(bào)變量,建立關(guān)于的回歸直線方程;

(Ⅱ)根據(jù)(Ⅰ)的結(jié)果預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)的年利潤(rùn).

附:對(duì)于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體上任意選擇個(gè)頂點(diǎn),然后將它們兩兩相連,則可能組成的幾何圖形為_________(寫出所有正確結(jié)論的編號(hào)).

①矩形;②不是矩形的平行四邊形;③有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體;④每個(gè)面都是等邊三角形的四面體;⑤每個(gè)面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)內(nèi)有極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)在(Ⅰ)的條件下,對(duì)任意,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,,點(diǎn)在棱上.

(1)求的長(zhǎng),并證明平面;

(2)若,試確定的值,使得到平面的距離為.

查看答案和解析>>

同步練習(xí)冊(cè)答案