【題目】已知函數(shù),為實數(shù).
(1)當時,判斷并證明函數(shù)在區(qū)間上的單調性;
(2)是否存在實數(shù),使得在閉區(qū)間上的最大值為,若存在,求出的值;若不存在,請說明理由.
【答案】(1)在上單調遞減,證明見解析;(2)存在
【解析】
(1)根據(jù)得到解析式,然后根據(jù),得到解析式,再設且,整理化簡,判斷出每個因式的正負,從而得到,從而證明在上的單調性;(2)根據(jù),判斷出 單調區(qū)間,然后根據(jù)對稱軸與區(qū)間之間的關系,進行分類討論,從而得到答案.
(1)當時,在上單調遞減.
以下為證明:
當,得到,
所以當時,,
設且,
因為,所以,
所以,所以
又因,所以,
即
所以當時,在上單調遞減.
(2),
因為
所以在,上單調遞增,在上單調遞減,
①當,即時,在上單調遞減,
,即,解得,
②當,即時,在單調遞增,在單調遞減,
,即,解得(舍),
③當,即時,在上單調遞增,
,即,解得(舍),
綜上所述,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.
(1)當x∈[1,e] 時,求f (x)的最小值;
(2)當a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù),
若,求不等式的解集;
是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;
寫出函數(shù)在R上的零點個數(shù)不必寫出過程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)已知為實數(shù),函數(shù),函數(shù).
(1)當時,令,求函數(shù)的極值;
(2)當時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立,若存在,求出實數(shù)的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系.
(Ⅰ)求直線的參數(shù)方程和極坐標方程;
(Ⅱ)設直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從1-20這20個整數(shù)中隨機選擇一個數(shù),設事件A表示選到的數(shù)能被2整除,事件B表示選到的數(shù)能被3整除,求下列事件的概率;
(1)這個數(shù)既能被2整除也能被3整除;
(2)這個數(shù)能被2整除或能被3整除;
(3)這個數(shù)既不能被2整除也不能被3整除.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“若,則”的否命題是“若,則”
B. 命題“,”的否定是“,”
C. “在處有極值”是“”的充要條件
D. 命題“若函數(shù)有零點,則“或”的逆否命題為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com