【題目】下列說(shuō)法正確的是( )
A. 命題“若,則”的否命題是“若,則”
B. 命題“,”的否定是“,”
C. “在處有極值”是“”的充要條件
D. 命題“若函數(shù)有零點(diǎn),則“或”的逆否命題為真命題
【答案】D
【解析】
選項(xiàng)A,否命題,條件否定,結(jié)論也要否定;選項(xiàng)B,命題的否定,只對(duì)結(jié)論否定;選項(xiàng)C,在處有極值,既要滿(mǎn)足,也要滿(mǎn)足函數(shù)在兩邊的單調(diào)性要相反;選項(xiàng)D,若函數(shù)有零點(diǎn),等價(jià)于,原命題與逆否命題同真假。
選項(xiàng)A,命題“若,則”的否命題是“若,則”,錯(cuò)誤;選項(xiàng)B,命題“,”的否定是“,”,錯(cuò)誤;選項(xiàng)C,不能得到在處有極值,例如在時(shí),導(dǎo)數(shù)為0,但不是函數(shù)極值點(diǎn),錯(cuò)誤;選項(xiàng)D,若函數(shù)有零點(diǎn),即方程有解,所以,解得或,所以原命題為真命題,又因?yàn)樵}與逆否命題同真假,所以逆否命題也是真命題,正確。
或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為定義在上的偶函數(shù),,且當(dāng)時(shí),單調(diào)遞增,則不等式的解集為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,過(guò)作互相垂直的兩條直線(xiàn)分別與相交于,和,四點(diǎn).
(1)四邊形能否成為平行四邊形,請(qǐng)說(shuō)明理由;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為實(shí)數(shù).
(1)當(dāng)時(shí),判斷并證明函數(shù)在區(qū)間上的單調(diào)性;
(2)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, , , 為等邊三角形, .
(1)求證:平面平面;
(2)求二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.
(1)求的值;
(2)證明:為單調(diào)增函數(shù);
(3)若,求在上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別是(單位:萬(wàn)元)和(單位:萬(wàn)元),它們與投入資金(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式,,今將萬(wàn)元資金投入甲、乙兩種商品,其中對(duì)甲商品投資(單位:萬(wàn)元).
(1)試建立總利潤(rùn)(單位:萬(wàn)元)關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域;
(2)問(wèn):如何分配資金,才能使得總利潤(rùn)(單位:萬(wàn)元)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直三棱柱的側(cè)面是正方形,點(diǎn)是側(cè)面的中心,,是棱的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,分別是線(xiàn)段的中點(diǎn),,,,直線(xiàn)與平面所成的角等于.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com