【題目】若函數(shù)f(x)=﹣ eax(a>0,b>0)的圖象在x=0處的切線與圓x2+y2=1相切,則a+b的最大值是(
A.4
B.2
C.2
D.

【答案】D
【解析】解:函數(shù)的f(x)的導(dǎo)數(shù)f′(x)= , 在x=0處的切線斜率k=f′(0)= ,
∵f(0)=﹣ ,∴切點坐標(biāo)為(0,﹣ ),
則在x=0處的切線方程為y+ = x,
即切線方程為ax+by+1=0,
∵切線與圓x2+y2=1相切,
∴圓心到切線的距離d= ,
即a2+b2=1,
∵a>0,b>0,
∴設(shè)a=sinx,則b=cosx,0<x< ,
則a+b=sinx+cosx= sin(x ),
∵0<x< ,
<x ,
即當(dāng)x = 時,a+b取得最大值為 ,
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)已知復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在第四象限,|z|=1,且z+ =1,求z;
(2)已知復(fù)數(shù)z= ﹣(1+5i)m﹣3(2+i)為純虛數(shù),求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為(
A.(﹣∞,e4
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組抽出的號碼為28,則第8組抽出的號碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于(
A.46
B.45
C.70
D.69

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x3﹣2ax+a在(1,2)內(nèi)有極小值,則實數(shù)a的取值范圍是(
A.(0,
B.(0,3)
C.( ,6)
D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意的x∈R都有3f′(x)>f(x)成立,則(
A.3f(3ln2)>2f(3ln3)
B.3f(3ln2)與2f(3ln3)的大小不確定
C.3f(3ln2)=2f(3ln3)
D.3f(3ln2)<2f(3ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個說法: ①若向量{ 、 }是空間的一個基底,則{ + 、 、 }也是空間的一個基底.
②空間的任意兩個向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是 、 ,則l∥m
④若兩個不同平面α,β的法向量分別是 、 ,且 =(1,2,﹣2)、 =(﹣2,﹣4,4),則α∥β.
其中正確的說法的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=f(x)的圖象向右平移 單位得到函數(shù)y=cos2x的圖象,則f(x)=(
A.﹣sin2x
B.cos2x
C.sin2x
D.﹣cos2x

查看答案和解析>>

同步練習(xí)冊答案