已知雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
解 (1)∵雙曲線的漸近線為y=±x,∴a=b,
∴c2=a2+b2=2a2=4,∴a2=b2=2,
∴雙曲線方程為-=1.
(2)設(shè)點(diǎn)A的坐標(biāo)為(x0,y0),
∴直線AO的斜率滿足·(-)=-1,
∴x0=y0,①
依題意,圓的方程為x2+y2=c2,
將①代入圓的方程,得3y+y=c2,即y0=c,
∴x0=c,∴點(diǎn)A的坐標(biāo)為,代入雙曲線方程,得=1,即b2c2-a2c2=a2b2,②
又∵a2+b2=c2,∴將b2=c2-a2代入②式,整理得
c4-2a2c2+a4=0,
∴34-82+4=0,∴(3e2-2)(e2-2)=0,
∵e>1,∴e=.∴雙曲線的離心率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
圓O1:x2+y2-2x=0和圓O2:x2+y2-4y=0的位置關(guān)系是( ).
A.相離 B.相交 C.外切 D.內(nèi)切
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1,F2是橢圓E:+=1(a>b>0)的左、右焦點(diǎn),P為直線x=上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知0<θ<,則雙曲線C1:=1與C2:=1的( ).
A.實(shí)軸長(zhǎng)相等 B.虛軸長(zhǎng)相等
C.離心率相等 D.焦距相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓D:+=1與圓M:x2+(y-5)2=9,雙曲線G與橢圓D有相同焦點(diǎn),它的兩條漸近線恰好與圓M相切,求雙曲線G的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線E:x2=2py(p>0)的焦點(diǎn)F作斜率分別為k1,k2的兩條不同直線l1,l2,且k1+k2=2,l1與E相交于點(diǎn)A,B,l2與E相交于點(diǎn)C,D,以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在直線記為l.
(1)若k1>0,k2>0,證明:·<2p2;
(2)若點(diǎn)M到直線l的距離的最小值為,求拋物線E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
點(diǎn)M(5,3)到拋物線y=ax2的準(zhǔn)線的距離為6,那么拋物線的方程是( ).
A.y=12x2 B.y=12x2或y=-36x2
C.y=-36x2 D.y=x2或y=-x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線l被C所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).
(1)求拋物線C的方程;
(2)過點(diǎn)F作直線交拋物線C于A,B兩點(diǎn).若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com