【題目】為了判斷英語詞匯量與閱讀水平是否相互獨立,某語言培訓(xùn)機構(gòu)隨機抽取了100位英語學(xué)習(xí)者進(jìn)行調(diào)查,經(jīng)過計算的觀測值為7,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是( )
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
A.有99%以上的把握認(rèn)為英語詞匯量與閱讀水平無關(guān)
B.有99.5%以上的把握認(rèn)為英語詞匯量與閱讀水平有關(guān)
C.有99.9%以上的把握認(rèn)為英語詞匯量與閱讀水平有關(guān)
D.在犯錯誤的概率不超過1%的前提下,可以認(rèn)為英語詞匯量與閱讀水平有關(guān)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0到9這10個數(shù)字中任取3個數(shù)字組成一個沒有重復(fù)數(shù)字的三位數(shù),這個數(shù)不能被3整除的概率為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線C:1(a>0,b>0)右焦點F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點A,若 ,則雙曲線C的漸近線方程為( )
A.y=±xB.y=±xC.y=±2xD.y=±x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且直線與曲線C有兩個不同的交點.
(1)求實數(shù)a的取值范圍;
(2)已知M為曲線C上一點,且曲線C在點M處的切線與直線垂直,求點M的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),其前n項的積為,記,.
(1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.
(2)若,,且
①求數(shù)列的通項公式.
②記,那么數(shù)列中是否存在兩項,(s,t均為正偶數(shù),且),使得數(shù)列,,,成等差數(shù)列?若存在,求s,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點);
(ii)當(dāng)最小時,求點T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示的平面五邊形中,,,,,,現(xiàn)將圖甲所示中的沿邊折起,使平面平面得如圖乙所示的四棱錐.在如圖乙所示中
(1)求證:平面;
(2)求二面角的大小;
(3)在棱上是否存在點使得與平面所成的角的正弦值為?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com