已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(ⅰ)求證g(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有
(1)當(dāng)a=2時(shí),f(x)在(0,+∞)單調(diào)遞增;
當(dāng)1<a<2時(shí),f(x)在(a-1,1)單調(diào)遞減,在(0,a-1),(1,+∞)單調(diào)遞增;
當(dāng)a>2時(shí),f(x)在(1,a-1)單調(diào)遞減,在(0,1),(a-1,+∞)單調(diào)遞增.
(2)見解析.

試題分析:(1)先求出函數(shù)的導(dǎo)函數(shù),然后求出時(shí)的駐點(diǎn),再由的大小關(guān)系討論導(dǎo)函數(shù)的正負(fù),從而確定函數(shù)的單調(diào)性;(2)(。┯得出;求出 ,由的范圍得從而得出出,函數(shù)單調(diào)遞增;(ⅱ)由單調(diào)遞增定義可推導(dǎo).
試題解析:(1)∵函數(shù)f(x)=x2-ax+(a-1)lnx,其中a>1,
∴f(x)的定義域?yàn)椋?,+∞),
解得:.
①若a-1=1,即a=2時(shí),
故f(x)在(0,+∞)單調(diào)遞增.
②若0<a-1<1,即1<a<2時(shí),
由f′(x)<0得,a-1<x<1;
由f′(x)>0得,0<x<a-1,或x>1.
故f(x)在(a-1,1)單調(diào)遞減,在(0,a-1),(1,+∞)單調(diào)遞增.
③若a-1>1,即a>2時(shí),
由f′(x)<0得,1<x<a-1;由f′(x)>0得,0<x<1,或x>a-1.
故f(x)在(1,a-1)單調(diào)遞減,在(0,1),(a-1,+∞)單調(diào)遞增.
綜上可得,當(dāng)a=2時(shí),f(x)在(0,+∞)單調(diào)遞增;
當(dāng)1<a<2時(shí),f(x)在(a-1,1)單調(diào)遞減,在(0,a-1),(1,+∞)單調(diào)遞增;
當(dāng)a>2時(shí),f(x)在(1,a-1)單調(diào)遞減,在(0,1),(a-1,+∞)單調(diào)遞增.
(2) (。
      .10分
由于1<a<5,故,即g(x)在(0, +∞) 上單調(diào)遞增.                .11分
(ⅱ)由(。┲(dāng)時(shí)有,即,
,當(dāng)時(shí),有 14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求處切線方程;
(2)求證:函數(shù)在區(qū)間上單調(diào)遞減;
(3)若不等式對任意的都成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的最小值;
(Ⅲ)若存在是自然對數(shù)的底數(shù))使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)處的切線垂直軸,求的值;
(Ⅱ)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅲ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù).若函數(shù)的零點(diǎn)為,函數(shù)的零點(diǎn)為,則有(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的零點(diǎn)所在區(qū)間為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)及其導(dǎo)數(shù),若存在,使得=,則稱 的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的函數(shù)的個(gè)數(shù)是(  )
,②,③,④,⑤
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)有且僅有兩個(gè)不同的零點(diǎn),,則(  )
A.當(dāng)時(shí),
B.當(dāng)時(shí),,
C.當(dāng)時(shí),,
D.當(dāng)時(shí),,

查看答案和解析>>

同步練習(xí)冊答案