【題目】如圖,在四棱錐中,,,,,平面,點在棱.

1)求證:平面平面;

2)若直線平面,求此時直線與平面所成角的正弦值.

【答案】(1)見解析(2)

【解析】

(1)首先可以通過解三角形求出的度數(shù),即可得出,再通過平面,即可得出,然后根據(jù)線面垂直的相關(guān)性質(zhì)即可得出平面,最后根據(jù)面面垂直的相關(guān)性質(zhì)即可證明出平面平面;

(2)可通過構(gòu)建空間直角坐標系并借助平面法向量來得出結(jié)果。

1)因為平面,所以

又因為,,

,可得,

所以,,即,

因為,所以平面,

因為平面,所以平面平面

2)以點為坐標原點,所在的直線為軸,所在的直線為軸,

如圖所示,建立空間直角坐標系,

其中,,,.

從而,

,從而得,

設平面的法向量為

若直線平面,滿足,

,

,取,且,

直線與平面所成角的正弦值等于。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一次循環(huán)賽中有2n+1支參賽隊,其中每隊與其他隊均只進行一場比賽,且比賽結(jié)果中沒有平局。若三支參賽隊A、B、C滿足:A擊敗B,B擊敗C,C擊敗A,則稱它們形成一個“環(huán)形三元組”。求:

(1)環(huán)形三元組的最小可能數(shù)目;

(2)環(huán)形三元組的最大可能數(shù)目。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某大學的名學生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認為學生的旅游費用支出服從正態(tài)分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學生中有名女生, 名男生,現(xiàn)想選其中名學生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學期望.

附:若,則

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ)寫出曲線C的直角坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若的極大值點,求的值;

2)若上只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù))

(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;

(Ⅱ)時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應填入的條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)若上恰有2個點到的距離等于,求的斜率.

查看答案和解析>>

同步練習冊答案