【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E﹣BCD的體積.
【答案】(1)見解析(2)見解析(3)
【解析】
(1)由,得到平面,從而得到.
(2)依據(jù)等腰及是中點得到,結(jié)合(1)中結(jié)論,可證明平面從而得到要求證的面面垂直.
(3)根據(jù)線面平行可得,從而為到平面的距離,為等腰直角三角形且腰長為,故可求的面積從而求得三棱錐的體積.
解:(1)證明:由, ,
平面,平面,且,
可得平面,由平面,可得;
(2)證明:由,為線段的中點,
可得,由平面,平面,
可得平面平面,又平面平面,
平面,且,即有平面,
平面,可得平面平面;
(3)平面,平面,且平面平面,
可得,又為的中點,
可得為的中點,且,
由平面,可得平面,
故,
則三棱錐的體積為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex-x-ax2.
(1)當a=時,求f(x)的單調(diào)區(qū)間;
(2)當x≥0時,f(x)≥0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為的圓過原點,且直線與圓相切于點.
(1)求圓的方程;
(2)已知過點的直線的斜率為,且直線與圓相交于兩點.
①若,求弦的長;
②若圓上存在點,使得成立,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】莫言是中國首位獲得諾貝爾文學獎的文學家,國人歡欣鼓舞。某高校文學社從男女生中各抽取50名同學調(diào)查對莫言作品的了程度,結(jié)果如下:
閱讀過莫言的作品數(shù)(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(1)試估計該學校學生閱讀莫言作品超過50篇的概率.
(2)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”,根據(jù)題意完成下表,并判斷能否有的把握認為“對莫言作品的非常了解”與性別有關?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知某區(qū)甲、乙、丙三所學校的教師志愿者人數(shù)分別為240,160,80.為助力疫情防控,現(xiàn)采用分層抽樣的方法,從這三所學校的教師志愿者中抽取6名教師,參與“抗擊疫情·你我同行”下卡口執(zhí)勤值守專項行動.
(Ⅰ)求應從甲、乙、丙三所學校的教師志愿者中分別抽取的人數(shù);
(Ⅱ)設抽出的6名教師志愿者分別記為,,,,,,現(xiàn)從中隨機抽取2名教師志愿者承擔測試體溫工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設為事件“抽取的2名教師志愿者來自同一所學校”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極小值;
(2)設函數(shù),試問:在定義域內(nèi)是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的中心在原點,焦點在坐標軸上,焦距為2.一雙曲線和該橢圓有公共焦點,且雙曲線的實半軸長比橢圓的長半軸長小4,雙曲線離心率與橢圓離心率之比為7∶3,求橢圓和雙曲線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com