【題目】函數(shù)處取得極大值,則實數(shù)的取值范圍為_____

【答案】

【解析】

求得fx)的導(dǎo)數(shù),注意分解因式,討論a0a,a,0a,a0,由極大值的定義,即可得到所求a的范圍.

fx)的導(dǎo)數(shù)為fx)=[ax2﹣(2a+1x+2]ex=(x2)(ax1ex,

a0x2時,fx)>0fx)遞增;x2,fx)<0,fx)遞減.

x2fx)取得極大值,滿足題意;

a,則fxx22ex≥0,fx)遞增,無極值;

a,則2fx)在(,2)遞減;在(2,+∞),(﹣,)遞增,

可得fx)在x2處取得極小值;不滿足題意.

0a,則2,fx)在(2,)遞減;在(,+∞),(﹣2)遞增,

可得fx)在x2處取得極大值,滿足題意;

a0,則x2時,fx)>0fx)遞增;x2,fx)<0,fx)遞減.

x2fx)取得極大值,滿足題意;綜上可得,a的范圍是:(﹣,).

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , , ,直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面 為線段的中點, 為線段上的動點.

)求證:

)當點滿足時,求證:直線平面

)當點是線段中點時,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)已知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.

2)若對任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某新上市的電子產(chǎn)品舉行為期一個星期(7天)的促銷活動,規(guī)定購買該電子產(chǎn)品可免費贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數(shù)進行統(tǒng)計,表示第天參加該活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)預(yù)測該星期最后一天參加該活動的人數(shù)(按四舍五入取到整數(shù)).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某新上市的電子產(chǎn)品舉行為期一個星期(7天)的促銷活動,規(guī)定購買該電子產(chǎn)品可免費贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數(shù)進行統(tǒng)計,y表示第x天參加該活動的人數(shù),得到統(tǒng)計表格如下,經(jīng)計算得.

x

1

2

3

4

5

y

4

m

10

23

22

1)若yx具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)預(yù)測該星期最后一天參加該活動的人數(shù)(按四舍五入取到整數(shù)).

參考公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出了根據(jù)我國2012~2018年水果人均占有量y(單位:kg)和年份代碼x繪制的散點圖(2012~2018年的年份代碼x分別為1~7).

1)根據(jù)散點圖相應(yīng)數(shù)據(jù)計算得,求y關(guān)于x的線性回歸方程;

2)估計我國2023年水果人均占有量是多少?(精確到1kg).

附:回歸方程中斜率和截距的最小二乘估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代儒家提出的六藝:禮樂射御書數(shù).某校國學(xué)社團預(yù)在周六開展六藝課程講座活動,周六這天準備排課六節(jié),每藝一節(jié),排課有如下要求:“不能相鄰,“要相鄰,則針對六藝課程講座活動的不同排課順序共有( )

A.18B.36C.72D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若過點P1,t)存在3條直線與曲線相切,求t的取值范圍__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,, 是等邊三角形,E是PA的中點,.

(1)求證:;

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案