(本小題滿分12分)
已知函數(shù)f(x)=x3+ax2+ax-2(a∈R),
(1)若函數(shù)f(x)在區(qū)間(-∞,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)A(x1,f(x1))、B(x2,f(x2))是函數(shù)f(x)的兩個(gè)極值點(diǎn),若直線AB的斜率不小于-,求實(shí)數(shù)a的取值范圍.
解:(1)因?yàn)楹瘮?shù)f(x)在(-∞,+∞)上為單調(diào)遞增函數(shù),
所以f′(x)=x2+ax+a>0在(-∞,+∞)上恒成立.
由Δ=a2-4a<0,解得0<a<4.                                                 4分
又當(dāng)a=0時(shí),f(x)=x3-2在(-∞,+∞)上為單調(diào)遞增函數(shù);
當(dāng)a=4時(shí),f(x)=x3+2x2+4x-2=(x+2)3-在(-∞,+∞)上為單調(diào)遞增函數(shù),
所以0≤a≤4.                                                        6分(12分文)
(2)依題意,方程f′(x)=0有兩個(gè)不同的實(shí)數(shù)根x1、x2,
由Δ=a2-4a>0,解得a<0或a>4,且x1+x2=-a,x1x2="a.                          " 8分
所以f(x1)-f(x2)=[(x12+x1x2+x22)+a(x1+x2)+a](x1-x2).
所以=[(x1+x2)2-x1x2]+a(x1+x2)+a=(a2-a)+a(-a)+a=-a2+a≥-.
解之,得-1≤a≤5.
所以實(shí)數(shù)a的取值范圍是-1≤a<0或4<a≤5.                                  12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知,則此函數(shù)圖象在點(diǎn)(1,)處的切線的傾斜角為
A.零角B.銳角C.直角D.鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分10分)已知定義在上的函數(shù)其中為常數(shù)。
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論的單調(diào)性;
(Ⅱ)設(shè)當(dāng)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,且,則的最大值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)函數(shù),則數(shù)列 (n∈N*)的前n項(xiàng)和是
A .         B.         C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),函數(shù)的導(dǎo)函數(shù)是,若是偶函數(shù),則以下結(jié)論正確的是        
A.的極大值為B.的極小值為
C.的極大值為D.的極小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖像是:(   )

A            B                C               D

查看答案和解析>>

同步練習(xí)冊(cè)答案