【題目】已知偶函數(shù),當(dāng)時(shí),,當(dāng)時(shí),.關(guān)于偶函數(shù)的圖象和直線個(gè)命題如下:

當(dāng)時(shí),存在直線與圖象恰有個(gè)公共點(diǎn);

若對(duì)于,直線與圖象的公共點(diǎn)不超過個(gè),則;

,,使得直線與圖象交于個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.

其中正確命題的序號(hào)是( ).

A. ①②B. ①③C. ②③D. ①②③

【答案】D

【解析】

根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,利用已知中的條件作出偶函數(shù),

的圖象,利用圖象得出:

①當(dāng)時(shí),偶函數(shù)的圖象如下:

存在直線,如,與圖象恰有個(gè)公共點(diǎn),故①正確.

②若對(duì)于,由于偶函數(shù)的圖象如下:

直線與圖象的公共點(diǎn)不超過個(gè),則,故②正確.

,偶函數(shù)的圖象如下:

,使得直線與圖象交于個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確;

因此正確命題的序號(hào)是①②③.故選

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓),,,是橢圓上的四個(gè)動(dòng)點(diǎn),且,,線段交于橢圓內(nèi)一點(diǎn).當(dāng)點(diǎn)的坐標(biāo)為,且,分別為橢圓的上頂點(diǎn)和右頂點(diǎn)重合時(shí),四邊形的面積為4.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)證明:當(dāng)點(diǎn),,在橢圓上運(yùn)動(dòng)時(shí),)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面,,,.

(1)證明;

(2)求異面直線所成角的余弦值;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蝴蝶定理因其美妙的構(gòu)圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學(xué)名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓的方程為,直線與圓交于,,直線與圓交于,.原點(diǎn)在圓內(nèi).

1)求證:.

2)設(shè)軸于點(diǎn),軸于點(diǎn).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為, , ,數(shù)列滿足: , ,數(shù)列的前n項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,平面平面,四邊形是菱形,

1)求證:;

2)求多面體被平面分成兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的個(gè)數(shù)是( )

(1)垂直于同一條直線的兩條直線互相平行

(2)與同一個(gè)平面夾角相等的兩條直線互相平行

(3)平行于同一個(gè)平面的兩條直線互相平行

(4)兩條直線能確定一個(gè)平面

(5)垂直于同一個(gè)平面的兩個(gè)平面平行

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),已知函數(shù)與函數(shù)有交點(diǎn),且交點(diǎn)橫坐標(biāo)之和不大于,求的取值范圍_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案