A. | e | B. | -e | C. | $\frac{1}{e}$ | D. | -$\frac{1}{e}$ |
分析 設(shè)切點(diǎn)坐標(biāo)為(a,lna),求函數(shù)的導(dǎo)數(shù),可得切線的斜率,切線的方程,代入(0,0),求切點(diǎn)坐標(biāo),切線的斜率.
解答 解:設(shè)切點(diǎn)坐標(biāo)為(a,lna),
∵y=lnx,∴y′=$\frac{1}{x}$,
切線的斜率是$\frac{1}{a}$,
切線的方程為y-lna=$\frac{1}{a}$(x-a),
將(0,0)代入可得lna=1,∴a=e,
∴切線的斜率是$\frac{1}{a}$=$\frac{1}{e}$;
故選:C.
點(diǎn)評 本題主要考查導(dǎo)數(shù)的幾何意義,利用切線斜率和導(dǎo)數(shù)之間的關(guān)系可以切點(diǎn)坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{14}}{2}$ | D. | $\frac{\sqrt{14}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | 1-2i | C. | -2+i | D. | -1+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com