已知數(shù)列1,a1a2,9是等差數(shù)列,數(shù)列1b1,b2b3,9是等比數(shù)列,則的值為________

 

【解析】因為1,a1a2,9是等差數(shù)列,所以a1a21910.因為1b1,b2,b39是等比數(shù)列,所以1×99.因為b2>0,所以b23,所以.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)ln xax(aR)

(1)f(x)的單調(diào)區(qū)間;

(2)設(shè)g(x)x24x2,若對任意x1(0,+∞),均存在x2[0,1],使得f(x1)g(x2),求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第2課時練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)x22(a2)xa2g(x)=-x22(a2)xa28.設(shè)H1(x)max{f(x),g(x)}H2(x)min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則AB(  )

A16 B.-16

Ca22a16 Da22a16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時練習(xí)卷(解析版) 題型:選擇題

若集合A{x||x|1xR},B{y|y2x2,xR},則(RA)∩B(  )

A{x|1≤x≤1} B{x|x≥0}

C{x|0≤x≤1} D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標·通用版專題四練習(xí)卷(解析版) 題型:解答題

已知n∈N*,數(shù)列{dn}滿足dn,數(shù)列{an}滿足and1d2d3d2n.又知數(shù)列{bn}中,b12,且對任意正整數(shù)m,n,.

(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;

(2)將數(shù)列{bn}中的第a1項,第a2項,第a3項,,第an項刪去后,剩余的項按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2013項和T2013.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標·通用版專題四練習(xí)卷(解析版) 題型:選擇題

已知{an}為等差數(shù)列,若a3a4a89,則S9(  )

A24 B27 C15 D54

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標·通用版專題六練習(xí)卷(解析版) 題型:解答題

(13)已知圓Ox2y23的半徑等于橢圓E1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線lyx的距離為,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1)B(x2,y2)

(1)求橢圓E的方程;

(2)求證:|AF||BF||BM||AM|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標·通用版專題八練習(xí)卷(解析版) 題型:填空題

已知向量的夾角為120°,且||3||2.λ,且,則實數(shù)λ的值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標·通用版專題三練習(xí)卷(解析版) 題型:解答題

如圖所示,角A為鈍角,且sin A,點P,Q分別是在角A的兩邊上不同于點A的動點.

(1)AP5PQ3,求AQ的長;

(2)APQα,AQPβ,且cos α,求sin(2αβ)的值.

 

查看答案和解析>>

同步練習(xí)冊答案