【題目】已知x,y滿足約束條件 ,若z=ax+y的最大值為4,則a=( )
A.3
B.2
C.﹣2
D.﹣3
【答案】B
【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
則A(2,0),B(1,1),
若z=ax+y過A時取得最大值為4,則2a=4,解得a=2,
此時,目標(biāo)函數(shù)為z=2x+y,
即y=﹣2x+z,
平移直線y=﹣2x+z,當(dāng)直線經(jīng)過A(2,0)時,截距最大,此時z最大為4,滿足條件,
若z=ax+y過B時取得最大值為4,則a+1=4,解得a=3,
此時,目標(biāo)函數(shù)為z=3x+y,
即y=﹣3x+z,
平移直線y=﹣3x+z,當(dāng)直線經(jīng)過A(2,0)時,截距最大,此時z最大為6,不滿足條件,
故a=2,
故選:B
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(﹣∞,+∞)上的奇函數(shù),當(dāng)x>0時,f(x)=4x﹣x2 , 若函數(shù)f(x)在區(qū)間[t,4]上的值域為[﹣4,4],則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A、B、C的對邊分別為a、b、c.已知(a+c)2﹣b2=3ac
(1)求角B;
(2)當(dāng)b=6,sinC=2sinA時,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛體育運(yùn)動是否與性別相關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛體育運(yùn)動 | 不喜愛體育運(yùn)動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部女生中隨機(jī)調(diào)查2人,恰好調(diào)查到的2位女生都喜愛體育運(yùn)動的概率為
(1)請將上面的列聯(lián)表補(bǔ)充完整(不用寫計算過程)
(2)能偶在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛體育運(yùn)動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= .其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 與 的夾角為 , ,| |=3,記 , (I) 若 ,求實數(shù)k的值;
(II) 當(dāng) 時,求向量 與 的夾角θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點(diǎn).
(Ⅰ)求證:CB1⊥平面ABC1;
(Ⅱ)求證:MN∥平面ABC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e,過F2的直線與橢圓的交于A,B兩點(diǎn),若△F1AB是以A為頂點(diǎn)的等腰直角三角形,則e2=( )
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com