【題目】已知向量 與 的夾角為 , ,| |=3,記 , (I) 若 ,求實數(shù)k的值;
(II) 當(dāng) 時,求向量 與 的夾角θ.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點.
(1)求證:直線AE⊥平面A1D1E;
(2)求二面角E﹣AD1﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移 個單位,則所得函數(shù)圖象對應(yīng)的解析式為( )
A.y=sin( x﹣ )
B.y=sin(2x﹣ )
C.y=sin x
D.y=sin( x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)﹣m(t).
(1)求函數(shù)f(x)的最小正周期及對稱軸方程;
(2)當(dāng)t∈[﹣2,0]時,求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中實數(shù)k為參數(shù),且滿足關(guān)于t的不等式 有解,若對任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AA1=AD=1,E為CD的中點.
(1)求證:B1E⊥AD1
(2)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.
(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com