【題目】為了解某班學(xué)生喜愛體育運動是否與性別相關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛體育運動

不喜愛體育運動

合計

男生

5

女生

10

合計

50

已知在全部女生中隨機調(diào)查2人,恰好調(diào)查到的2位女生都喜愛體育運動的概率為
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程)
(2)能偶在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛體育運動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= .其中n=a+b+c+d)

【答案】
(1)解:設(shè)女生共有n人,則 = ,∴n=25

列聯(lián)表如下:

喜好體育運動

不喜好體育運動

合計

男生

20

5

25

女生

10

15

25

合計

30

20

50


(2)解:K2= =8.333>7.879.

∴在犯錯誤的概率不超過0.005的前提下認(rèn)為喜好體育運動與性別有關(guān).


【解析】(1)根據(jù)在全部女生中隨機調(diào)查2人,恰好調(diào)查到的2位女生都喜愛體育運動的概率為 ,求出全部女生人數(shù),即可得到列聯(lián)表;(2)根據(jù)公式計算K2 , 對照臨界值表作結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線實軸長為6,一條漸近線方程為4x﹣3y=0.過雙曲線的右焦點F作傾斜角為 的直線交雙曲線于A、B兩點
(1)求雙曲線的方程;
(2)求線段AB的中點C到焦點F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進(jìn)行了問卷調(diào)查,得到如下的列聯(lián)表.

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其它方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列、數(shù)學(xué)期望以及方差.
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移 個單位,則所得函數(shù)圖象對應(yīng)的解析式為(
A.y=sin( x﹣
B.y=sin(2x﹣
C.y=sin x
D.y=sin( x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實數(shù)a的取值范圍是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)﹣m(t).
(1)求函數(shù)f(x)的最小正周期及對稱軸方程;
(2)當(dāng)t∈[﹣2,0]時,求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|xk|,H(x)=x|x﹣k|+2k﹣8,其中實數(shù)k為參數(shù),且滿足關(guān)于t的不等式 有解,若對任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y滿足約束條件 ,若z=ax+y的最大值為4,則a=(
A.3
B.2
C.﹣2
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ﹣2sinπx(﹣3≤x≤5)的所有零點之和等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣2,0),B(2,0),P(x0 , y0)是直線y=x+3上任意一點,以A,B為焦點的橢圓過P,記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是(
A.e與x0一一對應(yīng)
B.函數(shù)e(x0)無最小值,有最大值
C.函數(shù)e(x0)是增函數(shù)
D.函數(shù)e(x0)有最小值,無最大值

查看答案和解析>>

同步練習(xí)冊答案