【題目】已知點(diǎn)A(﹣2,0),B(2,0),P(x0 , y0)是直線y=x+3上任意一點(diǎn),以A,B為焦點(diǎn)的橢圓過P,記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是(
A.e與x0一一對應(yīng)
B.函數(shù)e(x0)無最小值,有最大值
C.函數(shù)e(x0)是增函數(shù)
D.函數(shù)e(x0)有最小值,無最大值

【答案】B
【解析】解:由題意可得c=2,橢圓離心率
故當(dāng)a取最大值時e取最小,a取最小值時e取最大.
由橢圓的定義可得|PA|+|PB|=2a,
由于|PA|+|PB|有最小值而沒有最大值,
即a有最小值而沒有最大值,故橢圓離心率e有最大值而沒有最小值,故B正確,且D不正確.
當(dāng)直線y=x+3和橢圓相交時,這兩個交點(diǎn)到A、B兩點(diǎn)的距離之和相等,都等于2a,
故這兩個交點(diǎn)對應(yīng)的離心率e相同,故A不正確.
由于當(dāng)x0的取值趨于負(fù)無窮大時,|PA|+|PB|=2a趨于正無窮大;
而當(dāng)x0的取值趨于正無窮大時,|PA|+|PB|=2a也趨于正無窮大,
故函數(shù)e(x0)不是增函數(shù),故C不正確.
故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛體育運(yùn)動是否與性別相關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛體育運(yùn)動

不喜愛體育運(yùn)動

合計(jì)

男生

5

女生

10

合計(jì)

50

已知在全部女生中隨機(jī)調(diào)查2人,恰好調(diào)查到的2位女生都喜愛體育運(yùn)動的概率為
(1)請將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程)
(2)能偶在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛體育運(yùn)動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= .其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點(diǎn).
(Ⅰ)求證:CB1⊥平面ABC1
(Ⅱ)求證:MN∥平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是A,B,C的對邊,且2cosA=
(1)若a2﹣c2=b2﹣mbc,求實(shí)數(shù)m的值;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水利工程隊(duì)相應(yīng)政府號召,計(jì)劃在韓江邊選擇一塊矩形農(nóng)田,挖土以加固河堤,為了不影響農(nóng)民收入,挖土后的農(nóng)田改造成面積為32400m2的矩形魚塘,其四周都留有寬3m的路面,問所選的農(nóng)田的長和寬各為多少時,才能使占有農(nóng)田的面積最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e,過F2的直線與橢圓的交于A,B兩點(diǎn),若△F1AB是以A為頂點(diǎn)的等腰直角三角形,則e2=(
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期2π的偶函數(shù),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時,0<f(x)<1;當(dāng)x∈(0,π),且x≠ 時,(x﹣ )f′(x)>0,則函數(shù)y=f(x)﹣sinx在[﹣2π,2π]上的零點(diǎn)個數(shù)為(
A.2
B.4
C.5
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x,過焦點(diǎn)F作與x軸垂直的直線l1 , C上任意一點(diǎn)P(x0 , y0)(y0≠0)處的切線為l,l與l1交于M,l與準(zhǔn)線交于N,則 =

查看答案和解析>>

同步練習(xí)冊答案