如圖,正六邊形ABCDEF中,
BA
+
CD
+
EF
=( 。
A、
 0 
B、
BE
C、
AD
D、
CF
考點:向量的加法及其幾何意義
專題:平面向量及應(yīng)用
分析:由題意,結(jié)合正六邊形的性質(zhì)和向量的加法運算法則,進行計算即可.
解答: 解:正六邊形ABCDEF中,
CD
=
AF
EF
=
CB
;
BA
+
CD
+
EF
=
BA
+
AF
+
CB

=
CB
+
BA
+
AF

=
CF

故選:D.
點評:本題考查了平面向量的運算問題,解題時應(yīng)根據(jù)平面向量的加法法則,直接計算即可,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),若對給定的△ABC,它的三邊的長a,b,c均在函數(shù)f(x)的定義域內(nèi),都有f(a),f(b),f(c)也為某三角形的三邊的長,則稱f(x)是△ABC的“三角形函數(shù)”,下面給出四個命題:
①函數(shù)f1(x)=x是任意三角形的“三角形函數(shù)”.
②函數(shù)f2(x)=
x
(x∈(0,+∞))是任意蘭角形“三角形函數(shù)”;
③若定義在 (0,+∞)上的周期函數(shù) f3(x)的值域也是勤f3(x),則f3(x)是任意三角形的“三角形函數(shù)”;
④若函數(shù)f4(x)=x3-3x+m在區(qū)間或(
2
3
4
3
)上是某三角形的“三角形函數(shù)”,則m的取值范是(
62
27
,+∞).
以上命題正確的有
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義域是一切實數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數(shù)x都成立,則稱f(x)是一個“λ的相關(guān)函數(shù)”.有下列關(guān)于“λ的相關(guān)函數(shù)”的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一一個“λ的相關(guān)函數(shù)”;
②f(x)=x2是一個“λ的相關(guān)函數(shù)”;
③“
1
2
的相關(guān)函數(shù)”至少有一個零點.
其中正確結(jié)論的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓C過極點,且圓心的極坐標是(a,
π
2
)(a>0),則圓C的極坐標方程是( 。
A、ρ=-2asinθ
B、ρ=2asinθ
C、ρ=-2acosθ
D、ρ=2acosθ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正六邊形ABCDEF的中心為點O,P為平面內(nèi)任意一點,則
PA
+
PB
+
PC
+
PD
+
PE
+
PF
=( 。
A、
0
B、
PO
C、3
PO
D、6
PO

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,正確的是( 。
A、若三條直線兩兩平行,則這三條直線必共面
B、互不平行的兩條直線是異面直線
C、分別位于兩個不同平面內(nèi)的兩條直線是異面直線
D、不同在任何一個平面內(nèi)的兩條直線是異面直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1中,點P在線段A1B1上,點Q在線段B1C1上,且B1P=B1Q,給出下列結(jié)論:
①A、C、P、Q四點共面;
②直線PQ與 AB1所成的角為60°;
③PQ⊥CD1;
④VP-ABCD=VQ-AA1D
其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:(2+1)+(22+2)+(23+3)+…+(2n+n)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2+ax+b的圖象在點P(0,f(0))處的切線方程為y=3x-2.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設(shè)g(x)=f(x)+
m
x-1
是[2,+∞)上的增函數(shù).求實數(shù)m的最大值.

查看答案和解析>>

同步練習冊答案