精英家教網 > 高中數學 > 題目詳情
5.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關于整除的問題,現有這樣一個整除問題:將2至2017這2016個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列{an},則此數列的項數為134.

分析 由能被3除余1且被5除余1的數就是能被15整除余1的數,運用等差數列通項公式,以及解不等式即可得到所求項數.

解答 解:由能被3除余1且被5除余1的數就是能被15整除余1的數,
故an=15n-14.
由an=15n-14≤2017
得n≤135.4,
當n=1時,此時a1=1,不符合,
故此數列的項數為135-1=134.
故答案為:134

點評 本題考查數列模型在實際問題中的應用,考查等差數列的通項公式的運用,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.“雙曲線方程為x2-y2=3”是“雙曲線離心率e=$\sqrt{2}$”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.方程x2+$\sqrt{2}$x-1=0的解可視為函數y=x+$\sqrt{2}$與函數y=$\frac{1}{x}$的圖象交點的橫坐標,若x4+ax-4=0的各實根x1、x2、…、xk(k≤4)所對應的點(xi,$\frac{4}{{x}_{i}}$)(i=1,2,…,k)均在直線y=x的同一側,則實數a的取值范圍是( 。
A.(-∞,-6)B.(-∞,-6)∪(6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦點為F1,F2,P是橢圓C上一點,若PF1⊥PF2,$|{{F_1}{F_2}}|=2\sqrt{3}$,△PF1F2的面積為1.
(1)求橢圓C的方程;
(2))如果橢圓C上總存在關于直線y=x+m對稱的兩點A,B,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知f(x)為奇函數,當x<0時,f(x)=ln(-x)-3x,則曲線y=f(x)在(1,f(1))處的切線方程為4x+y-1=0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.sin$\frac{5π}{3}$的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(2,5),$\overrightarrow$=(x,-2),且$\overrightarrow{a}$∥$\overrightarrow$,則x=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)若曲線y=f(x)與直線y=3x+b在x=1處相切,求實數a,b的值;
(Ⅱ)求函數y=f(x)的單調區(qū)間;
(Ⅲ)若a=0時,函數h(x)=f(x)+bx有兩個不同的零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.張老師 上班,有路線①與路線②兩條路線可供選擇.
路線①:沿途有A,B兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為$\frac{1}{2},\frac{2}{3}$,若A處遇到紅燈或黃燈,則導致延誤時間2分鐘;若B處遇到紅燈或黃燈,則導致延誤時間3分鐘;若兩處都遇到綠燈,則全程所花時間為20分鐘.
路線②:沿途有a,b兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為$\frac{3}{4}\frac{2}{5}$,若a處遇到紅燈或黃燈,則導致延誤時間8分鐘;若b處遇到紅燈或黃燈,則導致延誤時間5分鐘;若兩處都遇綠燈,則全程所化時間為15分鐘.
(1)若張老師選擇路線①,求他20分鐘能到校的概率;
(2)為使張老師日常上班途中所花時間較少,你建議張老師選擇哪條路線?說明理由.

查看答案和解析>>

同步練習冊答案