15.“雙曲線方程為x2-y2=3”是“雙曲線離心率e=$\sqrt{2}$”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 根據(jù)雙曲線的性質(zhì)結(jié)合充分條件和必要條件的定義進行判斷即可.

解答 解:雙曲線的標準方程為$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1,則a=b=$\sqrt{3}$,則雙曲線為等軸雙曲線,則雙曲線離心率e=$\sqrt{2}$,
即充分性成立,
反之若雙曲線離心率e=$\sqrt{2}$,則雙曲線為等軸雙曲線,但方程不一定為x2-y2=3,即必要性不成立,
即“雙曲線方程為x2-y2=3”是“雙曲線離心率e=$\sqrt{2}$”的充分不必要條件,
故選:B

點評 本題主要考查充分條件和必要條件的判斷,結(jié)合雙曲線的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,${a_1}=-\frac{2}{3}$,滿足${S_n}+\frac{1}{S_n}+2={a_n}(n≥2)$.
(1)計算S1,S2,S3,猜想Sn的一個表達式(不需要證明).
(2)設(shè)${b_n}=\frac{S_n}{{{n^2}+n}}$,數(shù)列{bn}的前n項和為Tn,求證:${T_n}>-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.分形幾何學是美籍法國數(shù)學家伯努瓦B•曼德爾布羅特(Benoit B.Mandelbrot)在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)眾多領(lǐng)域的難題提供了全新的思路.如圖是按照分形的規(guī)律生長成的一個樹形圖,則第10行的空心圓的個數(shù)是21.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在直棱柱ABC-A1B1C1中,AB=AC=4,∠BAC=90°,E為BC的中點.
(1)求證:平面AB1E⊥平面BCC1B1
(2)若側(cè)面ABB1A1為正方形,求證;BC1⊥平面AB1E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知x1,x2是函數(shù)f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]內(nèi)的兩個零點,則sin(x1+x2)=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知直線m,n,l,平面α,β.給出下面四個命題:(  )
①$\left.\begin{array}{l}m⊥α\\ α⊥β\end{array}\right\}⇒m∥β$;
②$\left.\begin{array}{l}m⊥l\\ n⊥l\end{array}\right\}⇒m∥n$;
③$\left.\begin{array}{l}α∥β\\ n?α\end{array}\right\}⇒n∥β$;
④$\left.\begin{array}{l}m∥α\\ m∥n\end{array}\right\}⇒n∥α$.
其中正確是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知冪函數(shù)f(x)=xk的圖象經(jīng)過函數(shù)g(x)=ax-2-$\frac{1}{2}$(a>0且a≠1)的圖象所過的定點,則f($\frac{1}{4}$)的值等于( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4. 如圖,點M($\sqrt{3}$,$\sqrt{2}$)在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,且點M到兩焦點的距離之和為6.
(1)求橢圓的方程;
(2)設(shè)MO(O為坐標原點)處置的直線交橢圓于A,B(A,B不重合),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列{an},則此數(shù)列的項數(shù)為134.

查看答案和解析>>

同步練習冊答案