11.若x、y滿足約束條件$\left\{\begin{array}{l}y≤x+1\\ 5x+3y≤15\\ 2y≥1\end{array}\right.$,則z=x+y的最大值為M=4.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)即可得到結(jié)論.

解答 解:x、y滿足約束條件$\left\{\begin{array}{l}y≤x+1\\ 5x+3y≤15\\ 2y≥1\end{array}\right.$,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=x+y得y=-x+z,
平移直線y=-x+z,
則當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)A時(shí),z取得最大值,
由:$\left\{\begin{array}{l}{y=x+1}\\{5x+3y=15}\end{array}\right.$,解得A($\frac{3}{2}$,$\frac{5}{2}$)時(shí),直線的截距最大,此時(shí)z最大,
此時(shí)z=4,
故答案為:4.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知:如圖所示,AB∥CD,OD2=BO•OE.求證:AD∥CE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對(duì)稱(chēng)點(diǎn)分別為A,B,線段MN的中點(diǎn)在C上,則|AN|+|BN|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的漸近線方程為$y=±\frac{3}{4}x$,且其焦點(diǎn)為(0,5),則雙曲線C的方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;其中正確的結(jié)論為③④.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線x+y+4=0被圓x2+y2+2x-2y+a=0所截得弦長(zhǎng)為2,則實(shí)數(shù)a的值為( 。
A.-1B.-4C.-7D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓${C_1}:{x^2}+{y^2}+2x=0$,圓${C_2}:{x^2}+{y^2}-2x-2y-2=0$,C1,C2分別為兩圓的圓心.
(Ⅰ)求圓C1和圓C2的公共弦長(zhǎng);
(Ⅱ)過(guò)點(diǎn)C1的直線l交圓C2與A,B,且$AB=\sqrt{14}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知△ABC和△EBC是邊長(zhǎng)為2的正三角形,平面EBC⊥平 面ABC,AD⊥平面ABC,且$AD=2\sqrt{3}$.
(Ι)證明:AD∥平面EBC;
(II)求三棱錐E-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)$y=\frac{1}{{\sqrt{x}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.RB.(-∞,0)∪(0,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案