如圖,在三棱錐中,,,設(shè)頂點(diǎn)在底面上的射影為

(Ⅰ)求證:;
(Ⅱ)設(shè)點(diǎn)在棱上,且,試求二面角的余弦值.

(1)根據(jù)題意,由于已知條件可知平面,那么利用線面垂直的性質(zhì)定理得到。
(2)

解析試題分析:證明:(I)方法一:由平面,
,則平面,
,  2分
同理可得,則為矩形,又
為正方形,故.  4分
方法二:由已知可得,設(shè)的中點(diǎn),則,則平面,故平面平面,則頂點(diǎn)在底面上的射影必在,故
(II)方法一:由(I)的證明過(guò)程知平面,過(guò),垂足為,則易證得,故即為二面角的平面角, 7分
由已知可得,則,故,則
,則,  9分
,即二面角的余弦值為. 11分
方法二: 由(I)的證明過(guò)程知為正方形,如圖建立坐標(biāo)系,

,
可得, 7分
,易知平面
的一個(gè)法向量為,設(shè)平面的一個(gè)法向量為
,則由, 9分
,即二面角的余弦值為. 11分
考點(diǎn):線面垂直的性質(zhì)定理以及二面角的大小
點(diǎn)評(píng):主要是考查了線面垂直以及二面角的平面角的求解的運(yùn)用屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形所在的平面與正方形所在的平面相互垂直,分別是、的中點(diǎn).
 
(1)求證:面;
(2)求直線與平面所成的角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖, 三棱柱ABC-A1B1C1中, 側(cè)棱A1A⊥底面ABC,且各棱長(zhǎng)均相等. D, E, F分別為棱AB, BC, A1C1的中點(diǎn).

(Ⅰ) 證明EF//平面A1CD;
(Ⅱ) 證明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直線BC與平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱柱

(I)當(dāng)正視方向與向量的方向相同時(shí),畫(huà)出四棱錐的正視圖(要求標(biāo)出尺寸,并寫(xiě)出演算過(guò)程);
(II)若M為PA的中點(diǎn),求證:求二面角
(III)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知為平行四邊形所在平面外一點(diǎn),的中點(diǎn),
求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在底面是正方形的四棱錐P—ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).

(1)求證:BD⊥FG;
(2)確定點(diǎn)G在線段AC上的位置,使FG//平面PBD,并說(shuō)明理由.
(3)當(dāng)二面角B—PC—D的大小為時(shí),求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,
且AC=AD=CD=DE=2,AB=1.

(Ⅰ)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在長(zhǎng)方體中,,過(guò)、三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體,且這個(gè)幾何體的體積為

(1)求棱的長(zhǎng);
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF平面EFDC.

(Ⅰ) 當(dāng),是否在折疊后的AD上存在一點(diǎn),且,使得CP∥平面ABEF?若存在,求出的值;若不存在,說(shuō)明理由;
(Ⅱ) 設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案