若橢圓+=1的焦點在x軸上,過點作圓x2+y2=1的切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓的右焦點和上頂點,則橢圓的方程是 .
科目:高中數(shù)學(xué) 來源: 題型:
在路邊安裝路燈,燈柱AB與地面垂直,燈桿BC與燈柱AB所在平面與道路垂直,且∠ABC=120°,路燈C采用錐形燈罩,射出的光線如圖中陰影部分所示,已知∠ACD=60°,路寬AD=24 m,設(shè)燈柱高AB=h(m),∠ACB=θ(30°≤θ≤45°).
(1) 求燈柱的高h(yuǎn)(用θ表示);
(2) 若燈桿BC與燈柱AB所用材料相同,記此用料長度和為S,求S關(guān)于θ的函數(shù)解析式,并求出S的最小值.
(第11題)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知正項數(shù)列{an}滿足Sn=.
(1) 求a1,a2,a3并推測an;
(2) 用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在極坐標(biāo)系中,圓C的方程為ρ=4cos,以極點為坐標(biāo)原點、極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被圓C截得的弦AB的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,已知橢圓E:+=1(a>b>0)的離心率e=,A1,A2分別是橢圓E的左、右兩個頂點,圓A2的半徑為a,過點A1作圓A2的切線,切點為P,在x軸的上方交橢圓E于點Q.
(1) 求直線OP的方程;
(2) 求的值;
(3) 設(shè)a為常數(shù),過點O作兩條互相垂直的直線,分別交橢圓E于點B,C,分別交圓A2于點M,N,記OBC和OMN的面積分別為S1,S2,求S1·S2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列集合中表示同一集合的是( )
A.M={(3,2)},N={(2,3)}
B.M={3,2},N={2,3}
C.M={(x,y)|x+y=1},N={y|x+y=1}
D.M={1,2},N={(1,2)}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義在R上的函數(shù)f(x),滿足當(dāng)x>0時,f(x)>1,且對任意的x,y∈R,有f(x+y)=f(x)·f(y),f(1)=2.
(1)求f(0)的值;
(2)求證:對任意x∈R,都有f(x)>0;
(3)解不等式f(3-2x)>4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com