(文科)已知拋物線和雙曲線都經(jīng)過點M(-
3
2
,-
6
),它們在x軸上有共同的一個焦點,雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點,求這兩條曲線的方程.
考點:雙曲線的簡單性質(zhì),拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)拋物線方程為y2=-2px(p>0),將M(-
3
2
,-
6
)代入,可求拋物線方程,再利用雙曲線的定義可求雙曲線方程.
解答: 解:設(shè)拋物線方程為y2=-2px(p>0),
將M(-
3
2
,-
6
),代入y2=2px,得p=2.
∴拋物線方程為y2=4x,焦點為F(1,0)
由題意知雙曲線的焦點為F1(-1,0),F(xiàn)2(1,0)
∴c=1
對于雙曲線,2a=|
1
4
+6
-
25
4
+6
|=1
∴a=
1
2
,
∴b=
1-
1
4
=
3
2

∴雙曲線方程為
x2
1
4
-
y2
3
4
=1
點評:本題主要考查利用待定系數(shù)法求拋物線、雙曲線方程,注意挖掘題目隱含,將問題等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足:
①對于任意實數(shù)a,b都有f(ab)=f(a)+f(b)-p,其中p是正實常數(shù);
②f(2)=p-1;
③當x>1時,總有f(x)<p.
(1)求f(1)與f(
1
2
)的值(用p表示);
(2)設(shè)an=f(2n)n∈N+,數(shù)列{an}的前n項和為Sn,當且僅當n=5時,Sn取得最大值,求p的取值范圍; 
(3)設(shè)m=et,n=t+1(t>0),判斷f(m)與f(n)的大小并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三棱錐P-ABC,底面邊長為6,側(cè)棱長為5,求它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解下列不等式:
(1)2x>8;
(2)(
1
2
x
2
;
(3)0.32-x>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABCDEFG中,四邊形ABCD是邊長為2的正方形,平面ABG,平面ADF,平面CDE都與平面ABCD垂直,且△ABG、△ADF、△CDE都是正三角形.
(1)求證:AC∥FE;
(2)求多面體ABCDEFG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了開闊學生的知識視野,某學校舉辦了一次數(shù)學知識競賽活動,共有800名學生參加,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)頻率分布表,解答下列問題:
(Ⅰ)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
序號(i)分組(分數(shù))組中值(Gi頻數(shù)(人數(shù))頻率(Fi
1[60,70)650.12
2[70,80)7520
3[80,90)85120.24
4[90,100)95
合計501
(Ⅱ)規(guī)定成績不低于90分的同學能獲獎,請估計在參加的800名學生中大概有多少同學獲獎?
(Ⅲ)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在正方體ABCD-A′B′C′D′中,′E為DD′的中點,BD′為正方體的對角線,
(1)求證:BD′∥平面ACE;
(2)設(shè)正方體的棱長為a,沿著平面ACE將正方體截去一個棱錐D-ACE,求剩下的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若P是拋物線y2=4x上的一點,A(2,2)是平面內(nèi)的一定點,F(xiàn)是拋物線的焦點,當P點坐標是
 
時,PA+PF最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:如圖α∥β,點S是平面α,β外的一點,直線SAB,SCD分別與α,β相交于點A,B和C,D.
(1)求證:AC∥BD;
(2)已知SA=4cm,AB=5cm,SC=3cm,求SD的長.

查看答案和解析>>

同步練習冊答案