【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當(dāng)為何值時,該活動室面積最大?并求出最大面積.

【答案】(1) .

(2) 當(dāng)且僅當(dāng)時等號成立,此時為等邊三角形

.

【解析】分析:(1)中,由正弦定理可得即可求的周長;

(2)利用余弦定理列出關(guān)系式,將的值代入并利用基本不等式求出的最大值,利用三角形的面積公式求出面積的最大值,以及此時的值.

詳解:(1)在中,有正弦定理可得,

,

的周長為.

(2)在中,有余弦定理得

當(dāng)且僅當(dāng)時等號成立,此時為等邊三角形

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等關(guān)系已知滿足,則下列選項中一定成立的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為雙曲線 的右焦點,過坐標(biāo)原點的直線依次與雙曲線的左、右支交于點,若, ,則該雙曲線的離心率為(

A. B. C. D.

【答案】B

【解析】,設(shè)雙曲線的左焦點為,連接,由對稱性可知, 為矩形,且故選B.

方法點睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解.

型】單選題
結(jié)束】
12

【題目】到點 及到直線的距離都相,如果這樣的點恰好只有一個,那么實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知向量,又點,,,.

(1)若,且,求向量

(2)若向量與向量共線,常數(shù),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有個不同小球的口袋中取出個小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應(yīng)等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)兩點A(4,0),B(0,2)

(1)求過P(2,3)點且與直線AB平行的直線l的方程;

(2)設(shè)O(0,0),求OAB外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA平面ABC,AB=2,AF=2,BD=1,CE=3,O為BC的中點.

(1)求證:面EFD面BCED;

(2)求平面DEF與平面ACEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】到點 及到直線的距離都相等,如果這樣的點恰好只有一個,那么實數(shù)的值是( )

A. B. C. D.

【答案】D

【解析】試題分析:由題意知在拋物線上,設(shè),則有,化簡得,當(dāng)時,符合題意;當(dāng)時,,有,則,所以選D

考點:1、點到直線的距離公式;2、拋物線的性質(zhì).

【方法點睛】本題考查拋物線的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點和直線的距離相等,則的軌跡是拋物線,再由直線與拋物線的位置關(guān)系可求;拋物線的定義是解決物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點到到焦點的距離、拋物線上的點到準(zhǔn)線的距離)進行等量轉(zhuǎn)化,如果問題中涉及拋物線的焦點和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線的定義就能解決.

型】單選題
結(jié)束】
13

【題目】在極坐標(biāo)系中,已知兩點 ,則, 兩點間的距離為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的最小正周期;

(2)常數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;

(3)若函數(shù)的最大值為2,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案