[x]表示不超過(guò)x的最大整數(shù),已知f(x)=
[x]
x
-a,當(dāng)x>0時(shí),f(x)=
[x]
x
-a有且僅有三個(gè)零點(diǎn),則a的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理,函數(shù)的零點(diǎn)與方程根的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=0得
[x]
x
=a,令g(x)=
[x]
x
,作出g(x)的圖象,利用數(shù)形結(jié)合即可得到a的取值范圍.
解答: 解:由f(x)=
[x]
x
-a=0得
[x]
x
=a,
設(shè)g(x)=
[x]
x
,
則當(dāng)0<x<1,[x]=0,此時(shí)g(x)=0,
當(dāng)1≤x<2,[x]=1,此時(shí)g(x)=
1
x
,此時(shí)
1
2
<g(x)≤1

當(dāng)2≤x<3,[x]=2,此時(shí)g(x)=
2
x
,此時(shí)
2
3
<g(x)≤1,
當(dāng)3≤x<4,[x]=3,此時(shí)g(x)=
3
x
,此時(shí)
3
4
<g(x)≤1,
當(dāng)4≤x<5,[x]=4,此時(shí)g(x)=
4
x
,此時(shí)
4
5
<g(x)≤1,
作出函數(shù)g(x)的圖象,
要使f(x)=
[x]
x
-a有且僅有三個(gè)零點(diǎn),
即函數(shù)g(x)=a有且僅有三個(gè)零點(diǎn),
則由圖象可知
3
4
<a≤
4
5
,
故答案為:(
3
4
,
4
5
]
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的應(yīng)用,根據(jù)函數(shù)和方程之間的關(guān)系構(gòu)造函數(shù)g(x),利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)函數(shù)y=sin(3x+
π
3
)cos(x-
π
6
)+cos(3x+
π
3
)sin(x-
π
6
)的圖象的一條對(duì)稱(chēng)軸的方程是( 。
A、x=-
π
24
B、x=-
π
12
C、x=
π
12
D、x=
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,對(duì)任意的k∈N*,a2k-1、a2k、a2k+1成等比數(shù)列,公比為qk;a2k、a2k+1、a2k+2成等差數(shù)列,公差為dk,且d1=2.
(1)寫(xiě)出數(shù)列{an}的前四項(xiàng);
(2)設(shè)bk=
1
qk-1
,求數(shù)列{bk}的通項(xiàng)公式;
(3)求數(shù)列{dk}的前k項(xiàng)和Dk

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
(1)命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
(3)對(duì)于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0)
,則有當(dāng)a=1時(shí),?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn);
(4)
1
0
1-x2
dx≤
e
1
1
x
dx
;
(5)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常數(shù),又s+2t的最小值是1,則m+3n=7.
其中正確的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px的焦點(diǎn)F與橢圓
x2
9
+
y2
5
=1的右焦點(diǎn)重合,其準(zhǔn)線與x軸相交于點(diǎn)M,點(diǎn)A在此拋物線上,且|AM|=
2
|AF|,則△AMF的內(nèi)切圓半徑的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x<1},集合N={y|y>0},則M∩N=( 。
A、{x|x<1}
B、{x|x>1}
C、{x|0<x<1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足不等式組
3x-y≤3
x+y≥1
x-y≥-1
,則z=2x+3y的最大值是(  )
A、13B、12C、11D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖,能使輸入的x值與輸出的y值相等的x值個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的方程為y=
1
2p
x2
,焦點(diǎn)F(0,1).直線y=2與拋物線C交于M,N兩點(diǎn)A,B在拋物線C上.
(1)求拋物線C的方程;
(2)若∠BMN=∠AMN,求證:直線AB的斜率為定值;
(3)若直線AB的斜率為
2
,且點(diǎn)N到直線MA,MB的距離的和為8,試判斷△MAB的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案