17.已知曲線y=$\frac{x^2}{4}$-lnx的一條切線的斜率為-$\frac{1}{2}$,則切點(diǎn)的橫坐標(biāo)為( 。
A.3B.2C.1D.$\frac{1}{2}$

分析 求出原函數(shù)的導(dǎo)函數(shù),設(shè)出斜率為-$\frac{1}{2}$的切線的切點(diǎn)為(x0,y0),(x0>0)由函數(shù)在x=x0時(shí)的導(dǎo)數(shù)等于-$\frac{1}{2}$求出x0的值,舍掉定義域外的x0得答案.

解答 解:由y=$\frac{x^2}{4}$-lnx得y′=$\frac{1}{2}x-\frac{1}{x}$.
設(shè)斜率為-$\frac{1}{2}$的切線的切點(diǎn)為(x0,y0),(x0>0)
則$\frac{1}{2}{x}_{0}-\frac{1}{{x}_{0}}=-\frac{1}{2}$.
解得:x0=1
故選:C.

點(diǎn)評(píng) 考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,考查了基本初等函數(shù)的導(dǎo)數(shù)公式,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.α、β是兩個(gè)不重合的平面,a、b是兩條不同直線,在下列條件下,可判定α∥β的是( 。
A.a、b是兩條異面直線且a∥α,b∥α,a∥β,b∥β
B.α內(nèi)有三個(gè)不共線點(diǎn)A、B、C到β的距離相等
C.a、b是α內(nèi)兩條直線,且a∥β,b∥β
D.α、β都平行于直線a、b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是2016年某大學(xué)自主招生面試環(huán)節(jié)中,七位評(píng)委為某考生打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的中位數(shù)和眾數(shù)依次為(  )
A.84,84B.84,85C.86,84D.84,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}中,a1+a9=16,a4=1,則a13的值是( 。
A.15B.30C.31D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足(2-i)z=5,則z=( 。
A.2+iB.2-iC.-2-iD.-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a=log48,b=log0.48,c=20.4,則( 。
A.b<c<aB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點(diǎn)P(tan 2015°,cos 2015°)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知A(-2,-3),B(3,0),直線l過點(diǎn)P(-1,2),且與線段AB相交,求直線l的斜率K的取值范圍;
(2)光線從點(diǎn)A(-3,4)射出,到x軸上的點(diǎn)B后,被x軸反射到y(tǒng)軸上的點(diǎn)C,又被y軸反射,這時(shí)反射光線恰好過點(diǎn)D(-1,6),求光線BC所在直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.學(xué)校小賣部貨架上擺放著某品牌方便面,它們的三視圖如圖,則貨架上的方便面至少有( 。
A.7盒B.8盒3C.9盒D.10盒

查看答案和解析>>

同步練習(xí)冊(cè)答案