已知數(shù)列{an}的前n項和為Sn=
n2+3n
4

(1)求{an}的通項公式;
(2)設(shè)bn=
1
nan
,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的前n項和
專題:計算題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)由an=Sn-Sn-1=
n+1
2
即可求得{an}的通項公式;
(2)由bn=
1
nan
=
2
n
-
2
n+1
,即可求得Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1
解答: 解:(1)當(dāng)n=1時,a1=S1=1,
當(dāng)n≥2時,an=Sn-Sn-1=
n2+3n
4
-
(n-1)2+3(n-1)
4
=
n+1
2

a1=1適合上式,
∴an=
1+n
2

(2)∵bn=
1
nan
=
2
n(n+1)
=
2
n
-
2
n+1
,
∴Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1
點評:本題考查數(shù)列的通項公式的求法,考察了數(shù)列的前n項和的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式axy≤4x2+y2對于∈[1,2],y∈[2,3]恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)統(tǒng)計資料,某工廠的日產(chǎn)量不超過20萬件,每日次品率p與日產(chǎn)量x(萬件)之間近似地滿足關(guān)系式p=
x2+60
540
(0<x≤12)
1
2
(12<x≤20)
,已知每生產(chǎn)1件正品可盈利2元,而生產(chǎn)1件次品虧損1元,(該工廠的日利潤y=日正品盈利額-日次品虧損額).
(1)將該過程日利潤y(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)該工廠日產(chǎn)量為多少萬件時日利潤最大?最大日利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=x,b=2,B=45°,若該三角形有兩個解,則x的取值范圍是(  )
A、x>2
B、x<2
C、2
2
>x>2
D、2
3
>x>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
x-y≥-1
x+y≤3
的解集記為D,由下面四個命題:
P1:?(x,y)∈D,則2x-y≥-1;
P2:?(x,y)∈D,則2x-y<-2;
P3:?(x,y)∈D,則2x-y>7;
P4:?(x,y)∈D,則2x-y≤5.
其中正確命題是( 。
A、P2,P3
B、P1,P2
C、P1,P3
D、P1,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的標準方程為
x2
5
+
y2
9
=1,則焦點坐標為( 。
A、(±2,0)
B、(±4,0)
C、(0,±4)
D、(0,±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤
π
2
)的部分圖象,其中A,B兩點之間的距離為5,那么f(-1)=( 。
A、-1
B、-
3
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:|1-
x-1
3
|≤1,q:x2-2x+1-m2
≤0,若“¬p”是“¬q”的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是(  )
A、f(x)=2-x
B、f(x)=x2+1
C、f(x)=
1
x2
D、f(x)=x3

查看答案和解析>>

同步練習(xí)冊答案