【題目】已知橢圓C:的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為.
求橢圓C的方程;
如圖所示,該橢圓C的左、右焦點(diǎn),作兩條平行的直線(xiàn)分別交橢圓于A,B,C,D四個(gè)點(diǎn),試求平行四邊形ABCD面積的最大值.
【答案】(1);(2) 最大值為.
【解析】
由題意離心率可得,再結(jié)合面積求解a,b的值,則橢圓方程可求;
由知,,且直線(xiàn)AB的斜率不為0,設(shè)直線(xiàn)AB的方程為,聯(lián)立直線(xiàn)方程與橢圓方程,把平行四邊形ABCD的面積用三角形OAB的面積表示,然后利用換元法結(jié)合單調(diào)性求最值.
解:由題意,,則,即.
又,,.
橢圓C的方程為;
由知,,且直線(xiàn)AB的斜率不為0,
設(shè)直線(xiàn)AB的方程為,,,
聯(lián)立,消去x得:.
得,.
四邊形是平行四邊形,根據(jù)對(duì)稱(chēng)性可知和關(guān)于點(diǎn)對(duì)稱(chēng),
.
令,則,
.
,且函數(shù)在上單調(diào)遞增,
當(dāng),即時(shí),平行四邊形ABCD面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)使用兩種零件、裝配兩種產(chǎn)品、,該廠(chǎng)的生產(chǎn)能力是月產(chǎn)產(chǎn)品最多有2500件,月產(chǎn)產(chǎn)品最多有1200件;而且組裝一件產(chǎn)品要4個(gè)、2個(gè),組裝一件產(chǎn)品要6個(gè)、8個(gè),該廠(chǎng)在某個(gè)月能用的零件最多14000個(gè);零件最多12000個(gè).已知產(chǎn)品每件利潤(rùn)1000元,產(chǎn)品每件2000元,欲使月利潤(rùn)最大,需要組裝、產(chǎn)品各多少件?最大利潤(rùn)多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)設(shè)時(shí),存在,使方程成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),直線(xiàn)及圓.
(1)求過(guò)點(diǎn)的圓的切線(xiàn)方程.
(2)若直線(xiàn)與圓相切,求的值.
(3)若直線(xiàn)與圓相交于、兩點(diǎn),且弦的長(zhǎng)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),
(1)當(dāng)時(shí),求在上的最大值和最小值;
(2)當(dāng)時(shí),過(guò)點(diǎn)作函數(shù)的圖象的切線(xiàn),求切線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn):,過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為:(為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于、兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(2)求線(xiàn)段的長(zhǎng)和的積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷(xiāo)售量(單位:t)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬(wàn)元)和年銷(xiāo)售量y(單位:t)具有線(xiàn)性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問(wèn)題:
①當(dāng)年宣傳費(fèi)為10萬(wàn)元時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤(rùn)與年宣傳費(fèi)的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計(jì)公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=lg(﹣x2+5x﹣6)的定義域?yàn)?/span>A,函數(shù)g(x),x∈(0,m)的值域?yàn)?/span>B.
(1)當(dāng)m=2時(shí),求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)x2﹣xlnx,g(x)=(m﹣x)lnx+(1﹣m)x(m<0).
(1)討論函數(shù)f′(x)的單調(diào)性;
(2)求函數(shù)F(x)=f(x)﹣g(x)在區(qū)間[1,+∞)上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com